

How to Better Transfer the Pre-trained Language Model?

余阳 2022.03.23

Outline

Low to the and Techning

D Effectiveness

- **D** Finetuning
- **D** Domain-adaptive finetuning
- **D** Efficiency
 - Prompt-based learning
 - Parameter-efficient finetuning
- □ Conclusion

Outline

D Effectiveness

- □ Finetuning
- Domain-adaptive finetuning
- □ Efficiency
 - Prompt-based learning
 - Parameter-efficient finetuning
- **D** Conclusion

Finetuning

□ Pre-train -> Finetune (NLP Paradigm #3)

D Some tricks

"The lower layer of the PLM may contain more general information."

Layer selection: select the most effective layer(s) for the downstream task.

□ Layer-wise decreasing learning rate

$$\begin{split} \theta^l_t &= \theta^l_{t-1} - \eta^l \cdot \nabla_{\theta^l} J(\theta) \\ \eta^{k-1} &= \xi \cdot \eta^k \end{split}$$

How to Fine-Tune BERT for Text Classification. Sun et al. 2019.

Finetuning

4

D Some tricks

Self-ensemble & Self-distillation: improve the stability of finetuning.
 Self-ensemble

$$\operatorname{BERT}_{\operatorname{SE}}(x;\bar{\theta}) = \operatorname{BERT}(x;\frac{1}{T}\sum_{\tau=1}^{T}\theta_t)$$

□ Self-distillation

Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation. Xu et al. 2020.

Finetuning

D Some tricks

Gelf-ensemble & Self-distillation: improve the stability of finetuning.

Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation. Xu et al. 2020.

Outline

6

□ Effectiveness

- **D** Finetuning
- **Domain-adaptive finetuning**
- □ Efficiency
 - Prompt-based learning
 - Parameter-efficient finetuning
- □ Conclusion

Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. Gururangan et al, ACL 2020 Honorable Mention Papers.

Domain-adaptive Finetuning

□ The PLM is u	sually pre-trained	d on genera	l corpora.
_			

- BookCorpus
- **u** Wikipedia
- CCNews, OpenWebText, CommonCrawl, etc.
- Narrow the data distribution gap between the pre-training data and the downstream task data.

Domain	Pretraining Corpus	# Tokens	Size
BIOMED	2.68M full-text papers from S2ORC (Lo et al., 2020)	7.55B	47GB
CS	2.22M full-text papers from S2ORC (Lo et al., 2020)	8.10B	48GB
NEWS	11.90M articles from REALNEWS (Zellers et al., 2019)	6.66B	39GB
REVIEWS	24.75M AMAZON reviews (He and McAuley, 2016)	2.11B	11GB

Hannen Technico

Self-supervised task on downstream domain corpora

Domain-adaptive pre-training (DAPT) / Task-adaptive pre-training (TAPT)
 Contrastive Learning, etc.

□ Supervised relevant task □ Sequential

8

□ Parallel (i.e., multi-task finetuning)

			Additional Pretraining Phases				
Domain	Task	ROBERTA	DAPT	TAPT	DAPT + TAPT		
PIOMED	CHEMPROT	$81.9_{1.0}$	$84.2_{0.2}$	82.60.4	84.4 $_{0.4}$		
BIOMED	[†] RCT	$87.2_{0.1}$	$87.6_{0.1}$	$87.7_{0.1}$	$87.8_{0.1}$		
CS	ACL-ARC	63.0 _{5.8}	$75.4_{2.5}$	67 .4 _{1.8}	75.6 _{3.8}		
CS	SCIERC	$77.3_{1.9}$	$80.8_{1.5}$	$79.3_{1.5}$	$81.3_{1.8}$		
NEWS	HyperPartisan	86.6 _{0.9}	$88.2_{5.9}$	90.4 _{5.2}	90.0 _{6.6}		
INEW5	[†] AGNEWS	$93.9_{0.2}$	$93.9_{0.2}$	$94.5_{0.1}$	94.6 _{0.1}		
DEVIEWO	[†] Helpfulness	65.1 _{3.4}	66.5 _{1.4}	68.5 _{1.9}	68.7 _{1.8}		
KEVIEWS	[†] IMDB	$95.0_{0.2}$	$95.4_{0.1}$	$95.5_{0.1}$	95.6 _{0.1}		

Outline

D Effectiveness

- **D** Finetuning
- **D**Omain-adaptive finetuning
- □ Efficiency
 - Prompt-based learning
 - Parameter-efficient finetuning
- **D** Conclusion

D Motivation

□ The PLM need to be finetuned for every new downstream task.

□ Finetuning is costly for extremely large PLMs.

E.g., T5 (11B), GPT-3 (175B)

□ Finetuning requires thousands to hundred of thousands task-specific examples.

■ Human can perform a new language task with a few examples or simple instructions.

□ Solution

□ In-context learning (prompt + demonstration) -> prompt-based learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate English to French:	<	task description
2	cheese =>	<i>~</i>	- prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Language Models are Few-Shot Learners. Brown et al. 2020.

12

Definition: Prompt is the technique of making better use of the knowledge from the PLM by adding additional texts to the input.
 Basic framework

13

Prompt addition

Design a template with two slots: input slot [X] and answer slot [Z].
Fill slot [X] with the input text *x*.

- E.g., sentiment analysis (prefix prompt) template = "[X] The movie is [Z]." input text x = "I love this movie." prompt x' = "I love this movie. The movie is [Z]."
 E.g., named entity recognition (cloze prompt)
 - E.g., named entity recognition (**cloze prompt**) template = "[X1] [X2] is a [Z] entity." input text [X1] = "Mike went to Paris." [X2] = "Paris" prompt x' = "Mike went to Paris. Paris is a [Z] entity."

□ Answer search

14

□ Search for text $\hat{z} \in \mathcal{Z}$ that maximize the score of a PLM $P(\cdot; \theta)$.

$$\hat{\boldsymbol{z}} = \operatorname{search}_{\boldsymbol{z} \in \mathcal{Z}} P(f_{\operatorname{fill}}(\boldsymbol{x'}, \boldsymbol{z}); \theta)$$

■ *Z* can be the entire vocabulary set, or a small subset specific to the target task. ■ The search function can be implemented as *argmax* or *sampling*.

□ E.g., *Z* = {"excellent", "good", "OK", "bad", "horrible"} for sentiment analysis.

16

Pre-train -> Prompt -> Predict (NLP Paradigm #4)

Narrow the gap between the pre-training task and the downstream task.

17

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. Liu et al. 2021.

1958 International Company

18

Human efforts

Prompt-based training strategies

zero-shot

·	<u> </u>					
Stratogy	I M Parama	Prompt Pa	arams	Fyomplo		
Strategy		Additional	Tuned	Ехапри		
Promptless Fine-tuning	Tuned	-		ELMo [130], BERT [32], BART [94]		
Tuning-free Prompting	Frozen	×	×	GPT-3 [16], AutoPrompt [159], LAMA [133]		
Fixed-LM Prompt Tuning	Frozen	\checkmark	Tuned	Prefix-Tuning [96], Prompt-Tuning [91]		
Fixed-prompt LM Tuning	Tuned	×	×	PET-TC [153], PET-Gen [152], LM-BFF [46]		
Prompt+LM Fine-tuning	Tuned	\checkmark	Tuned	PADA [8], P-Tuning [103], PTR [56]		
few	↓ -shot					

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. Liu et al. 2021.

□ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021)

Finding the right prompts, however, is an art – requiring both domain expertise and an understanding of the language model's inner workings."

Template	Label words	Accuracy
SST-2 (positive/negative)		mean (std)
$<\!\!S_1\!\!> \mathrm{It \ was}$ [MASK] .	great/terrible	92.7 (0.9)
$<\!S_1\!>$ It was [MASK] .	good/bad	92.5 (1.0)
${<}S_1{>}$ It was [MASK] .	cat/dog	91.5 (1.4)
$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	dog/cat	86.2 (5.4)
$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning	-	81.4 (3.8)
SNLI (entailment/neutral/	contradiction)	mean (std)
$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	Yes/Maybe/No	77.2 (3.7)
$<\!S_1\!>$. [MASK] , $<\!S_2\!>$	Yes/Maybe/No	76.2 (3.3)
$<\!\!S_1\!\!>?$ [MASK] $<\!\!S_2\!\!>$	Yes/Maybe/No	74.9 (3.0)
$<\!S_1\!><\!S_2\!>$ [MASK]	Yes/Maybe/No	65.8 (2.4)
$<\!\!S_2\!\!>?$ [MASK] , $<\!\!S_1\!\!>$	Yes/Maybe/No	62.9 (4.1)
$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	Maybe/No/Yes	60.6 (4.8)
Fine-tuning	-	48.4 (4.8)

□ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021)

(c) Prompt-based fine-tuning with demonstrations (our approach)

- □ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021) □ Automatic selection of label words (given a fixed template *T*)
 - For each class *c*, select top *k* words that maximize the total probability of D_{train}^{c} using the initial PLM.

$$\operatorname{Top-}_{v \in \mathcal{V}} \left\{ \sum_{x_{\mathrm{in}} \in \mathcal{D}_{\mathrm{train}}^{c}} \log P_{\mathcal{L}} \Big([\mathrm{MASK}] = v \mid \mathcal{T}(x_{\mathrm{in}}) \Big) \right\}$$

Further find the top *n* words that maximize zero-shot accuracy on *D*_{train}.
 Finetune all top *n* assignments and select the best one on *D*_{dev}.

□ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021) □ Automatic generation of templates (given a fixed set of label words $\mathcal{M}(\mathcal{Y})$) □ Conduct simple conversions to each training sample (x_{in} , y) $\in D_{train}$.

 $\begin{array}{l} <\!\!S_1\!\!> \longrightarrow <\!\!\mathrm{X}\!\!> \mathcal{M}(y) <\!\!\mathrm{Y}\!\!> <\!\!S_1\!\!>, \\ <\!\!S_1\!\!> \longrightarrow <\!\!S_1\!\!> <\!\!\mathrm{X}\!\!> \mathcal{M}(y) <\!\!\mathrm{Y}\!\!>, \\ <\!\!S_1\!\!>, <\!\!S_2\!\!> \longrightarrow <\!\!S_1\!\!> <\!\!\mathrm{X}\!\!> \mathcal{M}(y) <\!\!\mathrm{Y}\!\!> <\!\!S_2\!\!>. \end{array}$

- □ Use T5 to fill in missing spans.
- Use beam search to decode multiple templates.
- Finetune each generated templated on D_{train} and select the best one on D_{dev} .

Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021) Finetune with demonstrations

- **u** Use the pre-trained SBERT to generate the embeddings of each training sample $x_{in}^{(c)}$.
- Randomly sample one example $(x_{in}^{(c)}, y^{(c)})$ from the top 50% samples that most similar to x_{in} .
- □ Convert to filled prompt $\tilde{T}(x_{in}^{(c)}, y^{(c)})$ and concatenate with x_{in} .

□ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021)

Task	Auto template	Auto label words
SST-2	(positive/negative)	
	$\langle S_1 \rangle$ A [MASK] one.	irresistible/pathetic
	$\langle S_1 \rangle A$ [MASK] piece.	wonderful/bad
	$<\!\!S_1\!\!> \mathrm{All\ in\ all}$ [MASK] .	delicious/bad
SST-5	(very positive/positive/neutral/negative/very negative)	
	$<\!S_1\!>$ The movie is [MASK].	wonderful/remarkable/hilarious/better/awful
	$<\!S_1\!>$ The music is [MASK].	wonderful/perfect/hilarious/better/awful
	$<\!\!S_1\!\!>\!\operatorname{But}$ it is [MASK] .	unforgettable/extraordinary/good/better/terrible
MR	(positive/negative)	
	It was [MASK] $! < S_1 >$	epic/terrible
	$<\!S_1\!>\mathrm{It's}$ [mask] .	epic/awful
	$< S_1 > A$ [MASK] piece of work.	exquisite/horrible
CR	(positive/negative)	
	$<\!S_1\!>$ It's [MASK] !	fantastic/horrible
	$<\!\!S_1\!\!>$ The quality is [MASK].	neat/pointless
	$<\!\!S_1\!\!>$ That is [MASK].	magnificent/unacceptable

□ Making Pre-trained Language Models Better Few-shot Learners. (ACL 2021)

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	STS-B
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	STS-B (Pear.)
Majority [†]	MNLI (acc) 32.7	MNLI-mm (acc) 33.0	SNLI (acc) 33.8	QNLI (acc) 49.5	RTE (acc) 52.7	MRPC (F1) 81.2	QQP (F1) 0.0	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	MNLI (acc) 32.7 50.8	MNLI-mm (acc) 33.0 51.7	SNLI (acc) <i>33.8</i> 49.5	QNLI (acc) 49.5 50.8	RTE (acc) 52.7 51.3	MRPC (F1) 81.2 61.9	QQP (F1) 0.0 49.7	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	MNLI (acc) 32.7 50.8 52.0 (0.7)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6)	SNLI (acc) 33.8 49.5 47.1 (0.6)	QNLI (acc) 49.5 50.8 53.8 (0.4)	RTE (acc) 52.7 51.3 60.4 (1.4)	MRPC (F1) 81.2 61.9 45.7 (6.0)	QQP (F1) 0.0 49.7 36.1 (5.2)	STS-B (Pear.) -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3) 76.4 (6.2)

25

Outline

26

□ Effectiveness

- **D** Finetuning
- **D**Omain-adaptive finetuning
- □ Efficiency
 - □ Prompt-based learning
 - Parameter-efficient finetuning
- **D** Conclusion

- **D Motivation**: Finetuning the entire PLM is parameter inefficient.
- **□ Solution**: Fix the PLM and only finetune a few additional parameters.
 - □ Adapter

- □ Prefix-tuning & Prompt-tuning
- □ Low-rank adaptation

Parameter-Efficient Transfer Learning for NLP (ICML 2019)

28

Add some small adapter modules between layers of the PLM.
A new set of adapters are added and finetuned for every new task.
Adapter modules

□ small number of parameters

origin dimension *d*, projection dimension *m* total number of parameters = 2*md* + *d* + *m* near-identity initialization

■ skip-connection

near-zero initialization for projection layers

Layer Norm

Transformer

Laver

Adapter

000000

Layer

□ Parameter-Efficient Transfer Learning for NLP (ICML 2019)

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	MNLI _m	MNLI _{mm}	QNLI	RTE	Total
BERTLARGE	9.0 imes	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3 imes	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	1.2 imes	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Additional Tasks (BERT_{BASE})

Parameter-Efficient Transfer Learning for NLP. Houlsby et al. ICML 2019.

Prefix-Tuning

Inspired by prompting: having a proper context can steer the LM without changing its parameters.

□ Optimize a small **continuous** task-specific vector (called the **prefix**).

$$h_i = egin{cases} P_{ heta}[i,:], & ext{if } i \in \mathsf{P}_{\mathsf{idx}}, \ \mathsf{LM}_{\phi}(z_i,h_{< i}), & ext{otherwise.} \end{cases}$$

 $P_{\theta}[i,:] = \mathsf{MLP}_{\theta}(P'_{\theta}[i,:])$

Prefix-Tuning: Optimizing Continuous Prompts for Generation. Li et al. ACL 2021.

Parameter-efficient Finetuning

30

Fine-tuning

Parameter-efficient Finetuning

1958 University of Schere and Techning

□ Prompt-Tuning

31

- A simplification of prefix-tuning.
- Only allow an additional k tunable tokens per downstream task to be prepended to the input text.

The Power of Scale for Parameter-Efficient Prompt Tuning. Lester et al. EMNLP 2021.

LoRA: Low-Rank Adaptation of Large Language Models. Hu et al. 2021.

Parameter-efficient Finetuning

32

- □ LoRA: Low-Rank Adaptation of Language Models (2021)
 - **D** Hypothesize: The change in weights during model adaptation has a low "intrinsic rank".
 - □ Inject trainable rank decomposition matrices into each layer of the PLM.

 $W_0 + \Delta W = W_0 + BA$

- $W_0 \in \mathbb{R}^{d \times k} \quad A \in \mathbb{R}^{r \times k} \quad B \in \mathbb{R}^{d \times r}$
- □ Only adapt the attention weights (i.e., W_q , W_k , W_v , W_o).
- No additional inference latency.
- □ Cannot put samples of different tasks into the same batch.

□ Low-Rank Adaptation of Language Models (2021)

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB_{base} (Adpt ^D)*	0.3M	$87.1_{\pm .0}$	$94.2_{\pm.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
RoB_{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm.3}$	$\textbf{88.4}_{\pm.1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm.3}$	$95.1_{\pm.2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$93.3_{\pm.3}$	$90.8_{\pm.1}$	$86.6_{\pm.7}$	$91.5_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 ±.2	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	68.2 $_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6_{\pm.1}$	$87.4_{\pm 2.5}$	$\textbf{92.6}_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	$ 90.2_{\pm.3} $	$96.1_{\pm.3}$	$90.2_{\pm.7}$	68.3 ±1.0	94.8 ±.2	91.9 ±.1	$83.8_{\pm 2.9}$	$92.1_{\pm.7}$	88.4
RoB_{large} (Adpt ^P) [†]	0.8M	90.5 ±.3	$\textbf{96.6}_{\pm.2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB_{large} (Adpt ^H) [†]	6.0M	$89.9_{\pm .5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm1.1}$	$91.0_{\pm 1.7}$	87.8
RoB_{large} (Adpt ^H) [†]	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm.2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB_{large} (LoRA) [†]	0.8M	90.6 ±.2	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2_{\pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	85.2 $_{\pm 1.1}$	$\textbf{92.3}_{\pm.5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	91.9 _{±.2}	$96.9_{\pm.2}$	$92.6_{\pm.6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Outline

□ Effectiveness

- **D** Finetuning
- **D**Omain-adaptive finetuning
- □ Efficiency
 - Prompt-based learning
 - Parameter-efficient finetuning

Conclusion

Conclusion

- **□ Finetuning** requires carefully selected learning rate and output layers.
- Domain-adaptive finetuning is usually helpful when applying the PLM to a new downstream domain.
- **Prompt-based learning** is a hot new paradigm with little theoretical analysis. How to design better templates and answers is still an open question.
- □ **Parameter-efficient finetuning** is also a hot research topic due to its high efficiency and applicability in few-shot settings.

Reference

36

- How to Fine-Tune BERT for Text Classification? Sun et al. 2019. *arXiv preprint arXiv:* 1905.05583.
- □ Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation. Xu et al. 2020. *arXiv* preprint arXiv: 2002.10345.
- Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. Gururangan et al. 2020. In ACL.
- □ Language Models are Few-Shot Learners. Brown et al. 2020. *arXiv preprint arXiv*: 2005.14165.
- □ Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. Liu et al. 2021. *arXiv preprint arXiv:* 2107.13586.
- □ Making Pre-trained Language Models Better Few-shot Learners. Gao et al. 2021. In ACL.
- □ Parameter-Efficient Transfer Learning for NLP. Houlsby et al. 2019. In *ICML*.
- □ Prefix-Tuning: Optimizing Continuous Prompts for Generation. Li et al. 2021. In ACL.
- □ The Power of Scale for Parameter-Efficient Prompt Tuning. Lester et al. 2021. In *EMNLP*.
- □ LoRA: Low-Rank Adaptation of Large Language Models. Hu et al. 2021. *arXiv preprint arXiv:* 2106.09685.

Thanks Q&A