

Model Pre-training for Recommendation Systems

余阳 2023.10.23

Personal Information

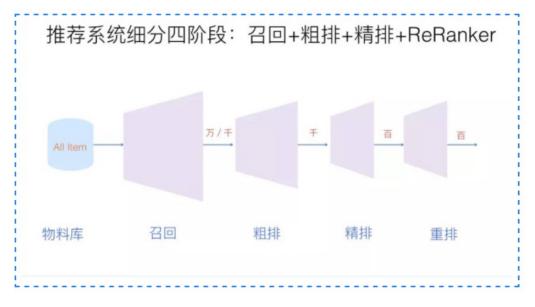
- ■姓名:余阳
- ■年级:研三
- ■导师: 刘淇 教授
- ■研究方向: 推荐系统, 预训练模型
- 工位: B702
- ■邮箱: <u>yflyl613@mail.ustc.edu.cn</u>

Outline

Background

- Model Pre-training for Item Modeling
- Model Pre-training for User Modeling
- **Future Directions**

Introduction to recommendation systems



A general recommendation system pipeline.

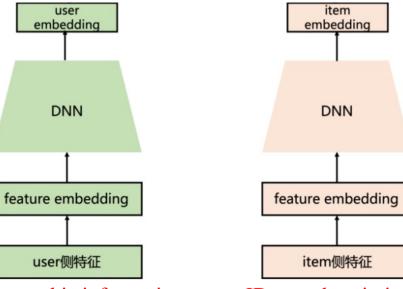
A real-world recommendation system framework.

5

Introduction to recommender systems

- □ Two key elements: item & user
- **Item modeling & user modeling**: Capture the characteristics of the item/user for specific tasks.
- Previous method
 - > Expertise-based feature engineering.

Deep learning-based methods



ID, demographic information, historical behaviors, etc.

ID, text descriptions, images, etc.

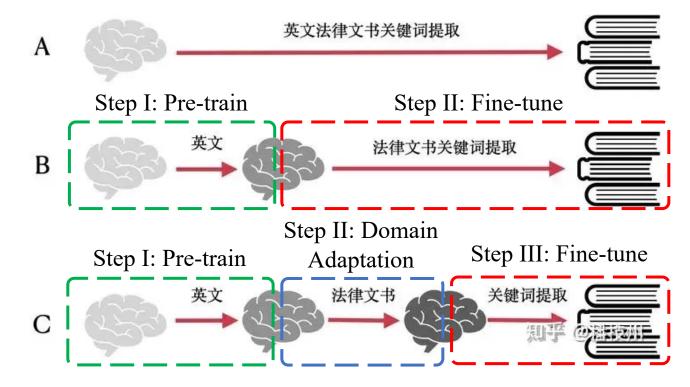
Why do we need model pre-training? The data sparsity problem.

- □ Most existing methods heavily rely on task-specific labeled data (supervised learning).
- □ Task-specific labeled data tend to be scarce in recommendation systems.
 - > Some user-related labels are **privacy-sensitive** (e.g., age, income level).
 - > Some behaviors are **naturally sparse** (e.g., traveling, purchasing).
 - The recommendation system updates rapidly (e.g., hundreds/thousands of new items/users are added to the system every day).

Limited labeled data leads to poor item/user modeling performance for supervised learning methods.

The pre-training paradigm

- □ Labeled data are limited and expensive while **unlabeled data** are abundant and cheap.
- Pre-train: Train the model to capture general knowledge on massive unlabeled data in an unsupervised/self-supervised manner.
- **Fine-tune**: Transfer the general knowledge and learn task-specific knowledge in a **supervised** manner.



Outline

8

Background

Model Pre-training for Item Modeling

- Model Pre-training for User Modeling
- **Future Directions**

How to capture transferable features for items?

- Domain-specific data
 - > Only valid in a specific domain.
 - > E.g., item ID, category ID, etc.
- General data
 - > Can be generalized across domains.
 - > E.g., text descriptions, images, etc.

ID

texts images entities

How to capture transferable features for items?

□ Incorporate **texts** / **entities** into item modeling.

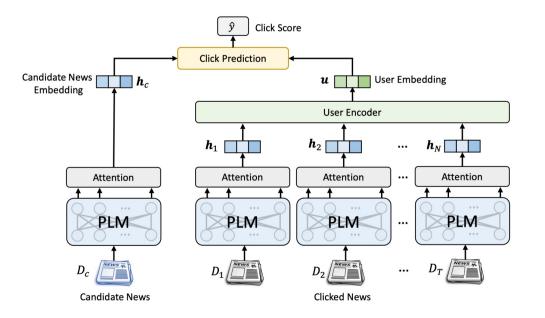


Figure 2: The framework of PLM empowered news recommendation.

Methods	EN-US	DE-DE	FR-FR	IT-IT	JA-JP	ES-ES	KO-KR
EBNR-Single	62.08	59.94	61.66	60.27	61.57	58.30	63.53
EBNR-MUSE	62.26	60.19	61.75	60.44	61.74	57.53	63.78
EBNR-Unicoder	63.35	61.44	62.34	61.18	62.76	58.70	64.80
EBNR-InfoXLM	64.29	62.03	62.97	61.98	63.34	59.33	65.58
NAML-Single	62.05	59.89	61.56	60.21	61.54	58.21	63.5
NAML-MUSE	62.17	60.17	61.71	60.4	61.69	57.46	63.73
NAML-Unicoder	63.3	61.37	62.32	61.16	62.74	58.61	64.77
NAML-InfoXLM	64.27	61.98	62.94	61.91	63.29	59.33	65.49
NPA-Single	62.09	59.90	61.56	60.24	61.57	58.24	63.56
NPA-MUSE	62.23	60.21	61.78	60.44	61.75	57.47	63.71
NPA-Unicoder	63.32	61.41	62.35	61.20	62.77	58.64	64.80
NPA-InfoXLM	64.29	62.00	62.93	61.94	63.31	59.37	65.50
LSTUR-Single	62.09	59.95	61.58	60.22	61.58	58.22	63.57
LSTUR-MUSE	62.21	60.21	61.79	60.44	61.73	57.49	63.75
LSTUR-Unicoder	63.34	61.40	62.36	61.20	62.77	58.65	64.80
LSTUR-InfoXLM	64.31	62.03	62.96	61.95	63.32	59.38	65.54
NRMS-Single	62.11	59.94	61.62	60.28	61.57	58.30	63.64
NRMS-MUSE	62.33	60.29	61.86	60.54	61.90	57.62	63.93
NRMS-Unicoder	63.41	61.50	62.46	61.22	62.81	58.84	64.79
NRMS-InfoXLM	64.34	62.05	63.04	61.98	63.40	59.44	65.58

markets with different languages

Wu et al. Empowering News Recommendation with Pre-trained Language Models. SIGIR 2021.

and the second s

How to capture transferable features for items?

□ Incorporate **texts** / **entities** into item modeling.

11

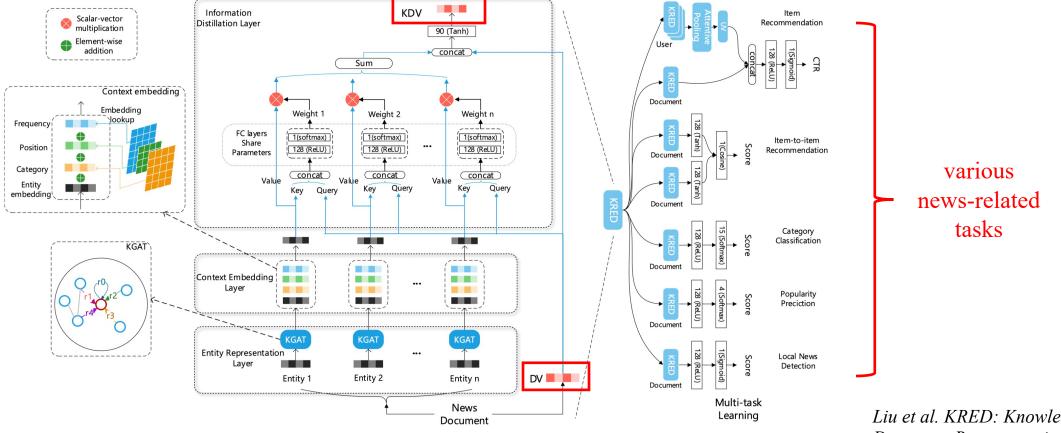


Figure 2: An overview of the proposed *KRED* model. DV indicates the (original) document vector. KDV indicates the knowledgeenhanced document vector produced by KRED. UV indicates the user vector. Liu et al. KRED: Knowledge-Aware Document Representation for News Recommendations. RecSys 2020.

How to capture transferable features for items?

□ Incorporate images / multi-modal features into item modeling.

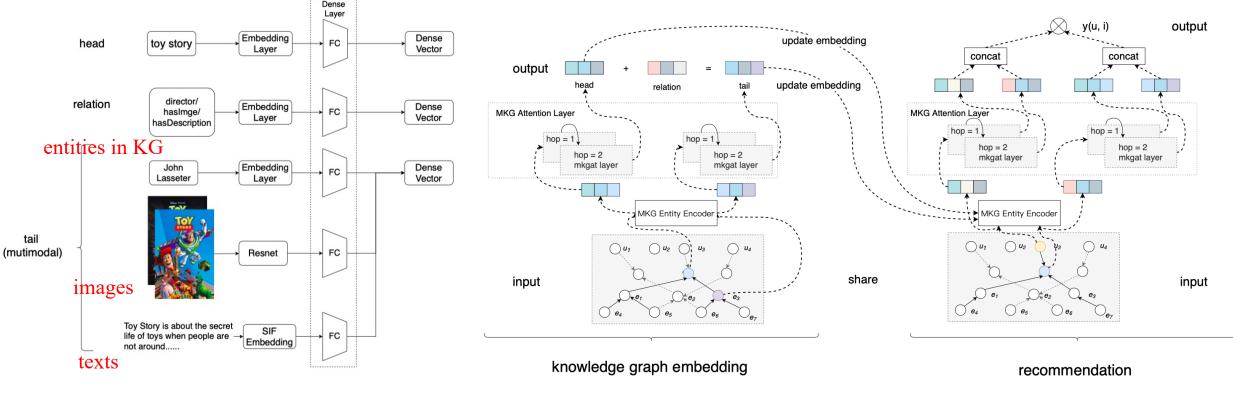


Figure 4: Multi-modal knowledge graph encoder.

Figure 5: Framework overview of the MKGAT model.

Sun et al. Multi-modal Knowledge Graphs for Recommender Systems. CIKM 2020.

University of the second secon

How to capture transferable features for items?

13

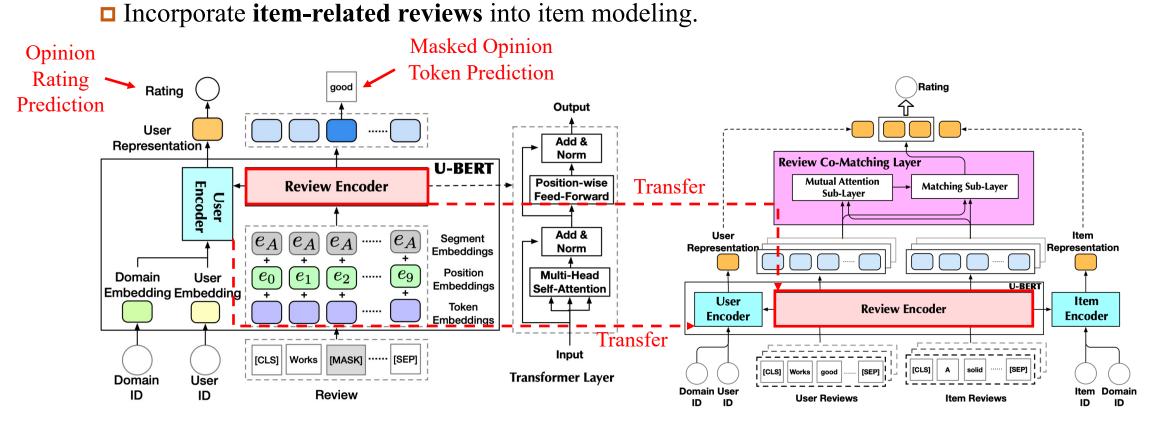


Figure 2: The pre-training stage.

Figure 3: The rating prediction framework.

Qiu et al. U-BERT: Pre-training User Representations for Improved Recommendation. AAAI 2021.

Gururangan et al. Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. ACL 2020.

Model Pre-training for Item Modeling

The domain adaptation problem for pre-trained models

- □ The PLM is usually pre-trained on general corpora.
 - BookCorpus
 - > Wikipedia
 - > CCNews, OpenWebText, CommonCrawl, etc.
- □ There is a **domain gap** between the pre-training corpora and the downstream task texts.
- Simply fine-tuning on limited labeled data may be insufficient to mitigate the **domain shift** problem.

Domain	Pretraining Corpus	# Tokens	Size
BIOMED	2.68M full-text papers from S2ORC (Lo et al., 2020)	7.55B	47GB
CS	2.22M full-text papers from S2ORC (Lo et al., 2020)	8.10B	48GB
NEWS	11.90M articles from REALNEWS (Zellers et al., 2019)	6.66B	39GB
REVIEWS	24.75M AMAZON reviews (He and McAuley, 2016)	2.11B	11 GB

РТ	100.0	54.1	34.5	27.3	19.2
News	54.1	100.0	40.0	24.9	17.3
Reviews	34.5	40.0	100.0	18.3	12.7
BioMed	27.3	24.9	18.3	100.0	21.4
CS	19.2	17.3	12.7	21.4	100.0
	РТ	News	Reviews	BioMed	CS

Figure 2: Vocabulary overlap (%) between domains. PT denotes a sample from sources similar to ROBERTA's pretraining corpus. Vocabularies for each domain are created by considering the top 10K most frequent words (excluding stopwords) in documents sampled from each domain.

Domain-adaptive pre-training (DAPT) □ Task-adaptive pre-training (TAPT)

Domain-specific post-training (DP)

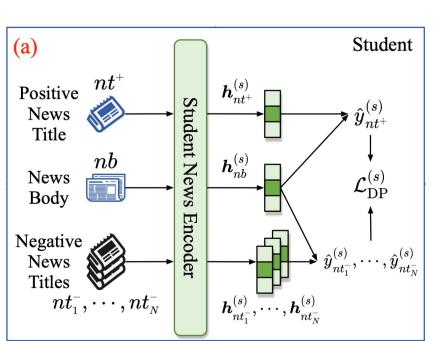
15

> Given a news body *nb*, train the PLM the identify the corresponding news title nt^+ from a set of candidates.

$$\mathcal{L}_{ ext{DP}} = -\log rac{\exp(\hat{y}_{nt^+})}{\exp(\hat{y}_{nt^+}) + \sum_{i=1}^N \exp(\hat{y}_{nt_i^-})}$$

Model	MIND				Model		
WIUUCI	AUC	MRR	nDCG@10	AUC	MRR	nDCG@10	Size
PLM-NR ₁₂ (FT)	69.72±0.15	34.74±0.10	43.71±0.07	67.93±0.13	34.42±0.07	45.09±0.07	109.89M
$PLM-NR_{12}$ (DAPT)	69.97±0.08	35.07±0.15	43.98±0.10	68.24±0.09	34.63±0.10	45.30±0.09	109.89M
PLM-NR ₁₂ (TAPT)	69.82±0.14	34.90±0.11	43.83±0.07	68.11±0.11	34.49±0.12	45.11±0.08	109.89M
PLM-NR ₁₂ (DP)	71.02±0.07	36.05±0.09	45.03±0.12	69.37±0.10	35.74±0.11	46.45±0.11	109.89M

Gururangan et al. Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. ACL 2020. Yu et al. Tiny-NewsRec: Effective and Efficient PLM-based News Recommendation. EMNLP 2022.



When item modeling meets LLM Utilize the powerful text understanding ability and inherent world knowledge of LLM to generate the item embedding.

16

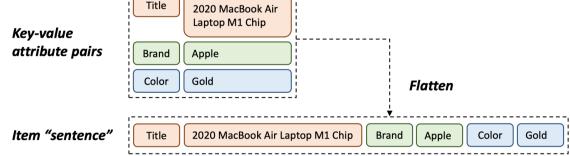
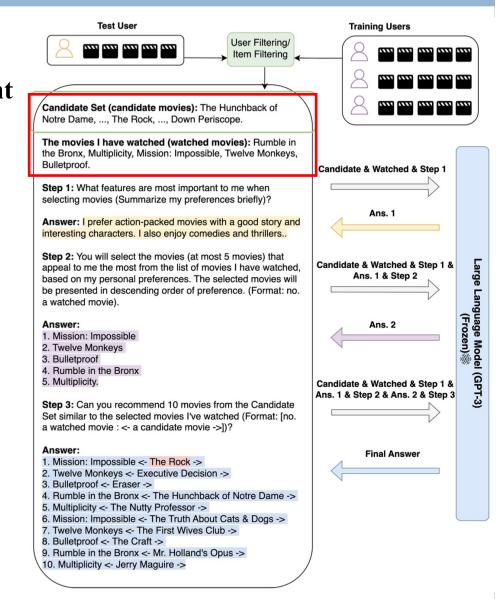


Figure 2: Model input construction. Flatten key-value attribute pairs into an item "sentence".

Li et al. Text Is All You Need: Learning Language Representations for Sequential Recommendation. KDD 2023.

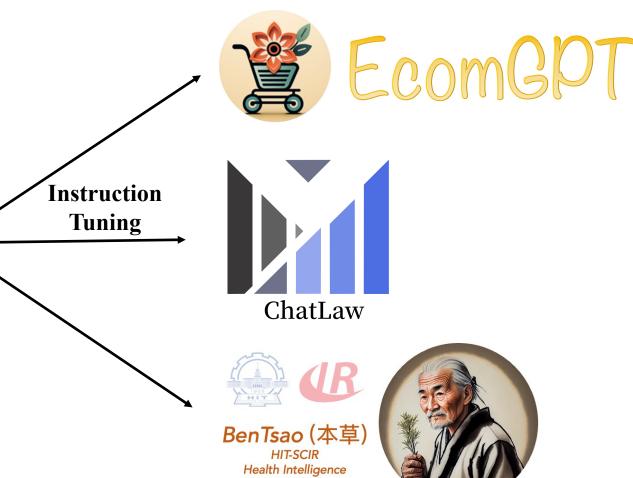
Wang et al. Zero-Shot Next-Item Recommendation using Large Pretrained Language Models. arXiv 2023.



• When item modeling meets LLM

□ The domain adaptation problem still exists!

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB



Touvron et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023. Cui et al. ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases. arXiv 2023. Li et al. EcomGPT: Instruction-tuning Large Language Models with Chain-of-Task Tasks for E-commerce. arXiv 2023. Wang et al. HuaTuo: Tuning LLaMA Model with Chinese Medical Knowledge. arXiv 2023.

Outline

18

Background

- Model Pre-training for Item Modeling
- Model Pre-training for User Modeling
- **Future Directions**

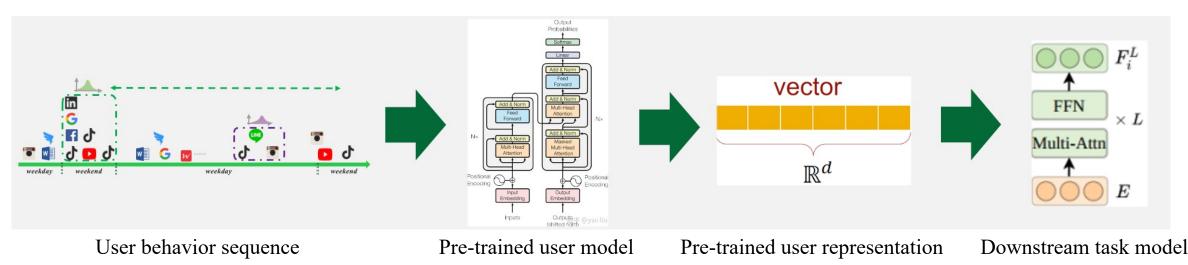
How to capture transferable features for users?

- □ ID-based data 🗙
- Users do not have general data such as text descriptions or images.
- □ The user model is first pre-trained on massive **unlabeled user behavior data** (e.g., browsing history) in a source domain and then transferred to various downstream user-oriented tasks.

Challenges

19

- □ Humans are more complex than texts/images. User interests are **diverse and versatile**.
- □ User behavior sequences are **discrete** and contain **heavy noise** as well.



Unit of the and Technifer

Behavior prediction-based methods

20

□ Apply NLP pre-training methods to user behavior sequences.

■ Next behavior prediction (GPT): predict the next behavior based on previous behaviors.

$$p(\mathbf{x}^{u};\Theta) = \prod_{i=1}^{n} p(x_{i}^{u} | x_{1}^{u}, ..., x_{i-1}^{u};\Theta) \qquad L(\mathcal{S};\Theta) = -\sum_{(u,\mathbf{x}^{u})\in\mathcal{S}} \log p(\mathbf{x}^{u};\Theta)$$

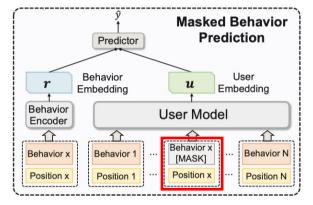
Masked behavior prediction (BERT): predict the masked behavior based on the remaining behaviors.

$$p(\mathbf{x}_{\Delta}^{u};\Theta) = \prod_{i=1}^{m} p(\mathbf{x}_{\Delta_{i}}^{u} | \tilde{\mathbf{x}}^{u};\Theta) \qquad G(\mathcal{S};\Theta) = -\sum_{(u,\mathbf{x}^{u})\in\mathcal{S}} \log p(\mathbf{x}_{\Delta}^{u};\Theta)$$

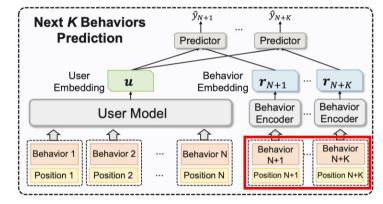
Behavior prediction-based methods

21

PTUM: masked behavior prediction + next *K* behaviors prediction.

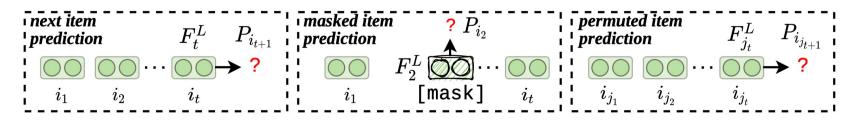


(a) Masked Behavior Prediction (MBP) task.



(b) Next K Behaviors Prediction (NBP) task.

IDA-SR: next behavior prediction + masked behavior prediction + **permuted behavior prediction**



Wu et al. PTUM: Pre-training User Model from Unlabeled User Behaviors via Self-supervision. Findings of EMNLP 2020. Mu et al. ID-Agnostic User Behavior Pre-training for Sequential Recommendation. CCIR 2022.

Behavior prediction-based methods

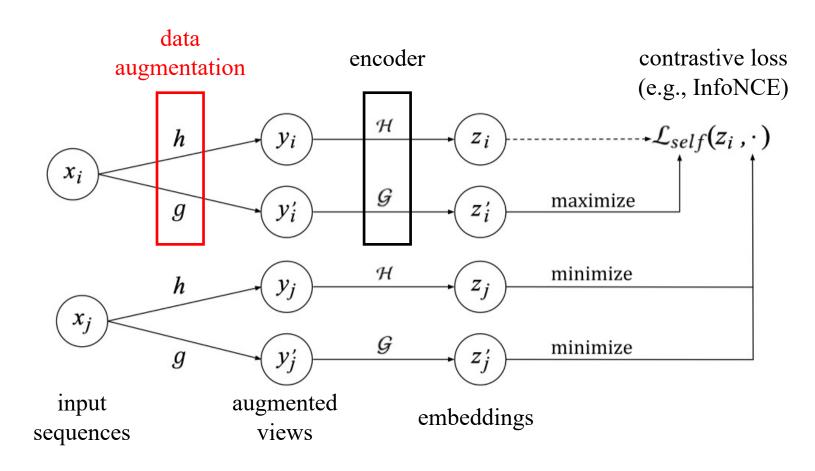
22

- □ Predict the **exact behavior** given a context.
- □ There is a gap between the **behavior-level prediction task** and the **sequence-level user modeling task**.
- Existing methods try to model the correlation between behaviors while lacking sequence-level representation learning.
- □ The behavior set (>1M) can be much larger than the vocabulary set in PLMs (32K~250K), which makes the prediction task much more difficult.

Contrastive learning-based methods

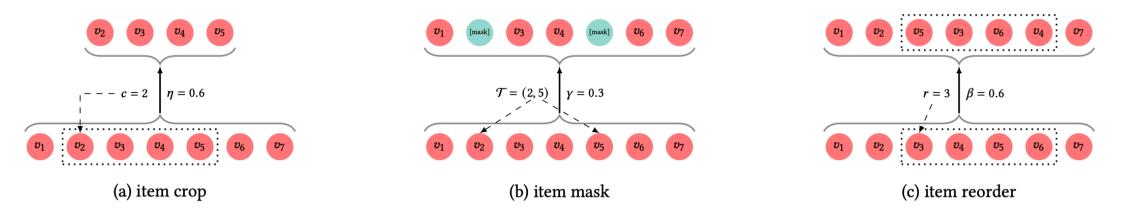
23

□ Apply **contrastive learning** to user behavior sequences.



Contrastive learning-based methods

- □ Apply **contrastive learning** to user behavior sequences.
- **CL4SRec**: mask + crop + reorder

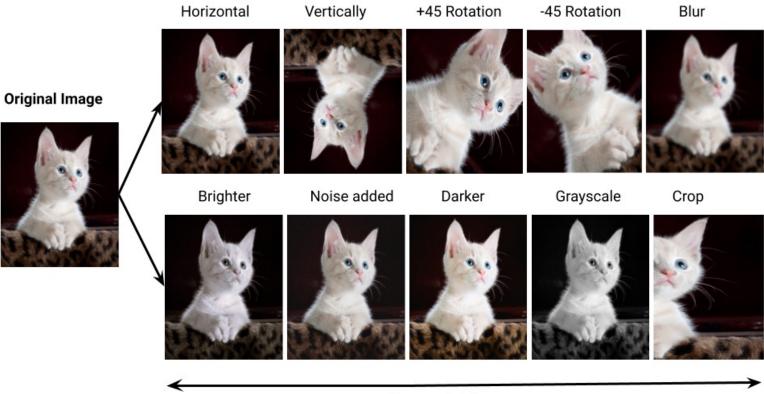


May not hold the basic assumption of contrastive learning: the augmented views should be semantically consistent.

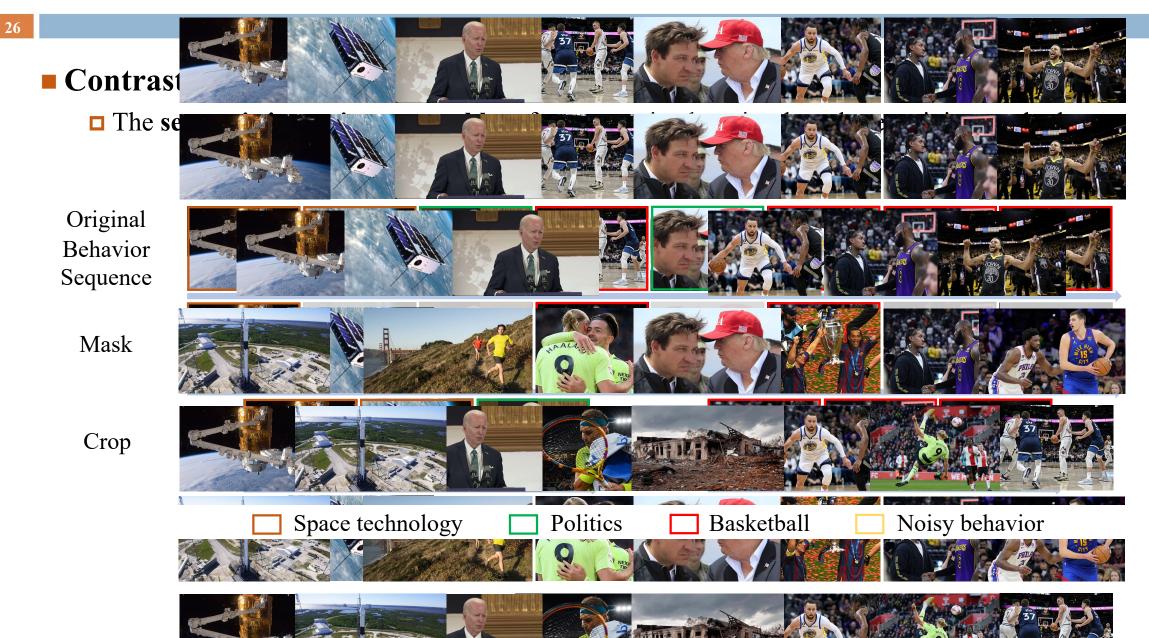
Contrastive learning-based methods

25

□ The semantic inconsistency problem for contrastive learning-based pre-training methods.



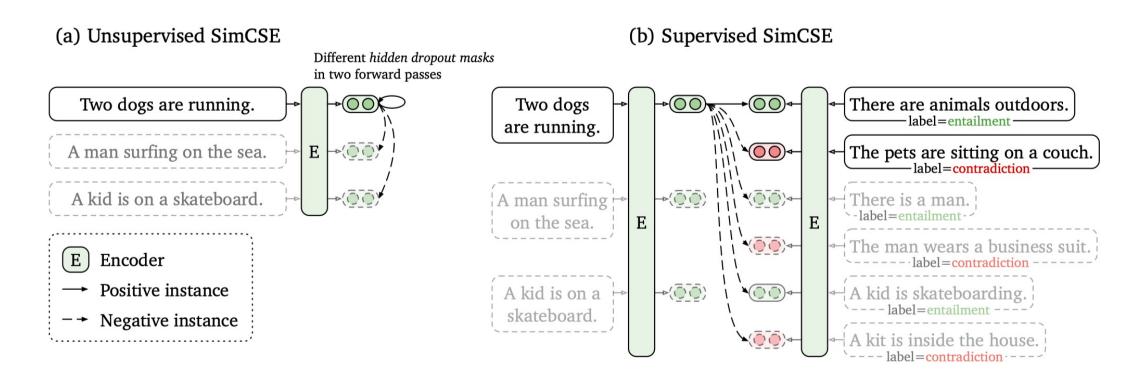
Augmented Images



Contrastive learning-based methods

27

□ The **semantic inconsistency problem** for contrastive learning-based pre-training methods.



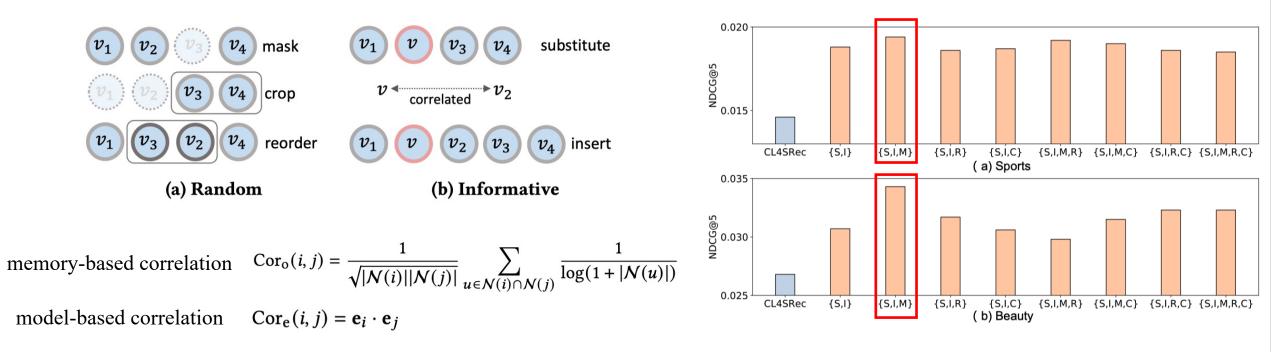
Gao et al. SimCSE: Simple Contrastive Learning of Sentence Embeddings. EMNLP 2021.

Contrastive learning-based methods

28

□ The semantic inconsistency problem for contrastive learning-based pre-training methods.

CoSeRec: Take **item correlation** into consideration



Liu et al. Contrastive Self-supervised Sequential Recommendation with Robust Augmentation. arXiv 2021.

Contrastive learning-based methods

□ The **semantic inconsistency problem** for contrastive learning-based pre-training methods.

CCL: Generate high-quality positive samples with **mask-and-fill**

$$s' = g_{\text{mask}}(s_u) = [i'_1, i'_2, \dots, i'_n],$$
$$i'_t = \begin{cases} i_t \in s_u, & t \notin \mathcal{M}; \\ [\text{mask}], & t \in \mathcal{M}. \end{cases}$$

$$z = g_{\text{fill}}(s') = [i'_1, i'_2, \dots, i'_n],$$
$$i'_t = \begin{cases} i_t \in s, & t \notin \mathcal{M}; \\ i \sim P(\cdot|s_{u, \neg k}, \mathcal{A}_u), & t \in \mathcal{M}. \end{cases}$$
an MLM model

Models	HR@5	NDCG@5	HR@10	NDCG@10
$\text{CCL}_{\neg \text{Aug}}$	0.3796	0.2855	0.4898	0.3136
CCL _{¬Attr}	0.4060	0.3035	0.5152	0.3389
CCL _{¬Curriculum}	0.3937	0.2915	0.5014	0.3277
CCL _{¬Annealing}	0.4044	0.3035	0.5126	0.3401
CCL _{Reorder}	0.3998	0.3002	0.5085	0.3354
CCL	0.4156	0.3125	0.5234	0.3466

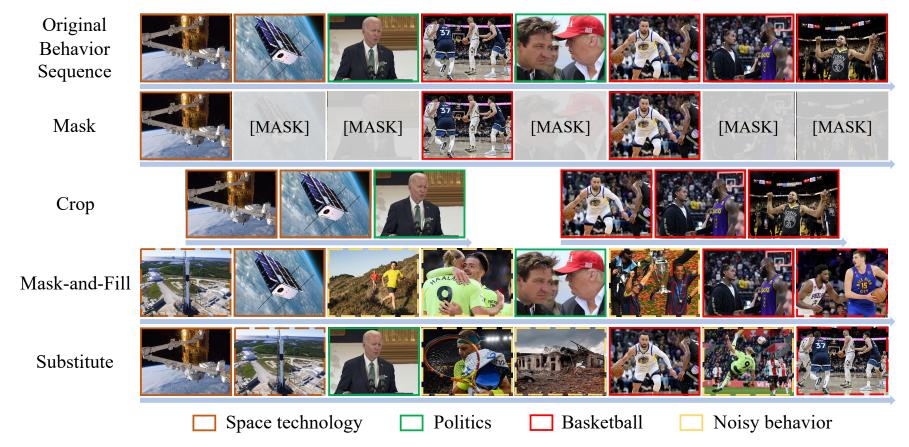
Models	File Search	File Download	Video Player	News Search
Origin Origin+CCL	0.0594 0.0650	0.0636 0.0650	0.0640 0.0676	0.0678 0.0696
Improvement	+2.6%	+2.2%	+4.7%	+2.7%

Bian et al. Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. CIKM 2021.

Contrastive learning-based methods

30

□ The **semantic inconsistency problem** for contrastive learning-based pre-training methods.



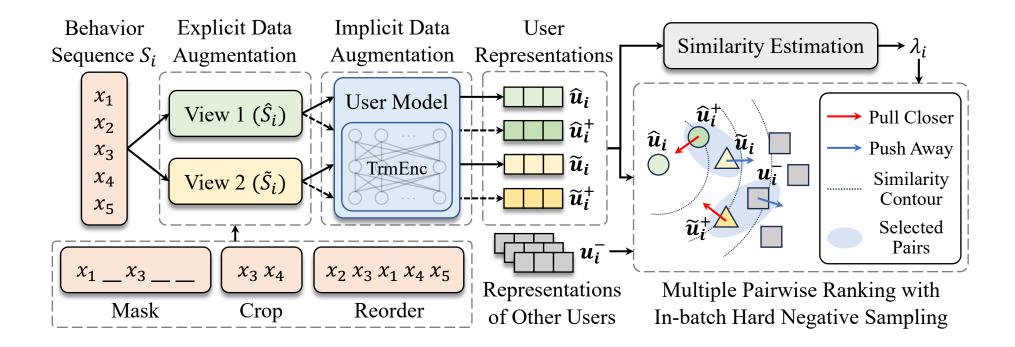
Yu et al. AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking. NIPS 2023.

Contrastive learning-based methods

- **The semantic inconsistency problem** for contrastive learning-based pre-training methods.
- □ AdaptSSR: Replace the contrastive learning task with a self-supervised ranking task.
 - > User model \mathcal{M} , user behavior sequence $S = \{x_1, x_2, ..., x_n\}$
 - > Input *S* into \mathcal{M} twice with different independently sampled dropout masks $\rightarrow u, u^+$ (implicit data augmentation)
 - > Input the augmented behavior sequence \hat{S} into $\mathcal{M} \to \hat{u}$ (explicit data augmentation)
 - > Input the behavior sequence of another user into $\mathcal{M} \to u^-$
 - > Pre-training objective: $sim(u, u^+) \ge sim(u, \hat{u}) \ge sim(u, u^-)$

Contrastive learning-based methods

- **The semantic inconsistency problem** for contrastive learning-based pre-training methods.
- □ AdaptSSR: Replace the contrastive learning task with a self-supervised ranking task.



Yu et al. AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking. NIPS 2023.

University of the and Technology

33

Contrastive learning-based methods

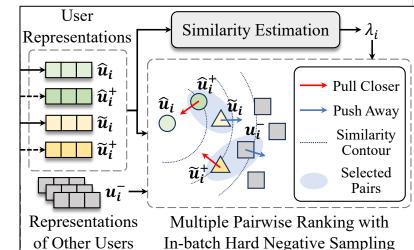
- □ The **semantic inconsistency problem** for contrastive learning-based pre-training methods.
- □ AdaptSSR: Replace the contrastive learning task with a self-supervised ranking task.
 - > Pre-training objective: $sim(u, u^+) \ge sim(u, \hat{u}) \ge sim(u, u^-)$
 - > Multiple pairwise ranking loss (MPR) with in-batch hard negative sampling

$$\hat{\mathcal{L}}_{i} = -\log\sigma \left[\lambda \left(\sin(\hat{\boldsymbol{u}}_{i}, \hat{\boldsymbol{u}}_{i}^{+}) - \max_{\boldsymbol{v} \in \{\tilde{\boldsymbol{u}}_{i}, \tilde{\boldsymbol{u}}_{i}^{+}\}} \sin(\hat{\boldsymbol{u}}_{i}, \boldsymbol{v}) \right) + (1 - \lambda) \left(\min_{\boldsymbol{v} \in \{\tilde{\boldsymbol{u}}_{i}, \tilde{\boldsymbol{u}}_{i}^{+}\}} \sin(\hat{\boldsymbol{u}}_{i}, \boldsymbol{v}) - \max_{\boldsymbol{w} \in \mathbf{U}_{i}^{-}} \sin(\hat{\boldsymbol{u}}_{i}, \boldsymbol{w}) \right) \right]$$

- > Augmentation-adaptive fusion
 - The effects of data augmentation vary significantly across different behavior sequences.

$$\lambda_i = 1 - \frac{1}{4} \sum_{\hat{\boldsymbol{s}} \in \{\hat{\boldsymbol{u}}_i, \hat{\boldsymbol{u}}_i^+\}} \sum_{\tilde{\boldsymbol{s}} \in \{\tilde{\boldsymbol{u}}_i, \tilde{\boldsymbol{u}}_i^+\}} \max(\operatorname{sim}(\hat{\boldsymbol{s}}, \tilde{\boldsymbol{s}}), 0)$$

Yu et al. AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking. NIPS 2023. Yu et al. Multiple Pairwise Ranking with Implicit Feedback. CIKM 2018.

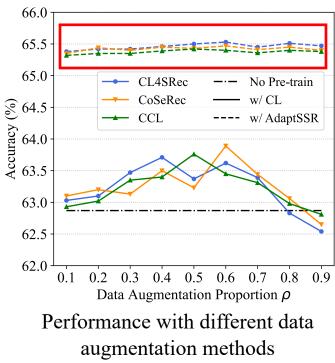


Contrastive learning-based methods

□ The **semantic inconsistency problem** for contrastive learning-based pre-training methods.

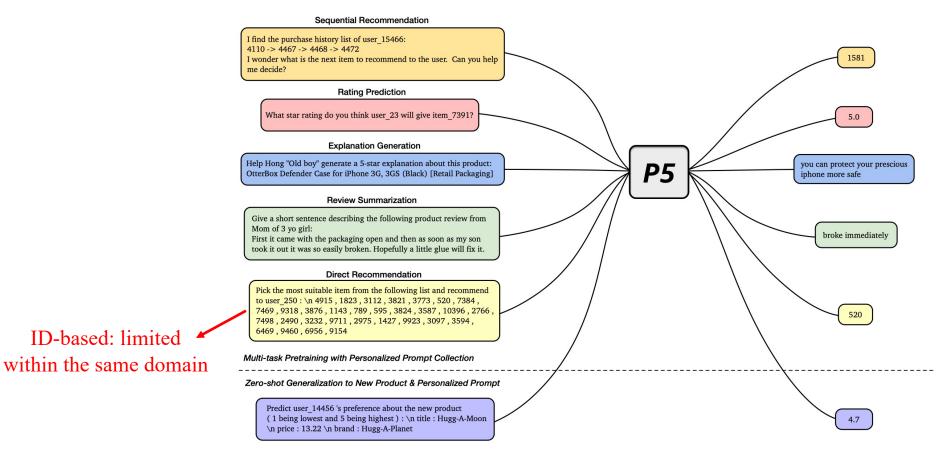
□ AdaptSSR: Replace the contrastive learning task with a self-supervised ranking task.

		age predict		life stat		click recomment		thumb- recomment	1	gende predicti		CVR predictio	n	
-	Pre-train	\mathcal{T}_1		\mathcal{T}_2		\mathcal{T}_3		\mathcal{T}_4		\mathcal{T}_5		\mathcal{T}_6		
	Method	Acc	Impr	Acc	Impr	NDCG@10	Impr	NDCG@10	Impr	AUC	Impr	AUC	Impr	
behavior - prediction-bas	ed None	$62.87{\pm}0.05$	-	$52.24{\pm}0.16$	-	$1.99{\pm}0.03$	-	$2.87{\pm}0.07$	-	$78.63{\pm}0.06$	-	$75.14{\pm}0.14$	-	
methods	PeterRec	$63.62{\pm}0.11$	1.19	$53.14{\pm}0.07$	1.72	$2.37{\pm}0.02$	19.10	3.06 ± 0.08	6.62	$79.61{\pm}0.13$	1.25	$76.04{\pm}0.10$	1.20	(70)
	PTUM	$63.21{\pm}0.14$	0.54	$53.05{\pm}0.04$	1.55	$2.29{\pm}0.03$	15.08	$2.96{\pm}0.03$	3.14	$79.48{\scriptstyle\pm0.11}$	1.08	$75.82{\pm}0.13$	0.90	
contrastive	CLUE	$63.38{\pm}0.10$	0.81	$53.23{\pm}0.05$	1.90	$2.38{\pm}0.02$	19.60	$3.05{\pm}0.21$	6.27	$79.90{\pm}0.06$	1.62	$76.03{\pm}0.16$	1.18	
learning-based	CCL	$63.76{\pm}0.11$	1.42	$53.37{\pm}0.09$	2.16	$2.43{\pm}0.02$	22.11	$3.32{\pm}0.13$	15.68	$80.22{\pm}0.07$	2.02	$77.35{\scriptstyle\pm0.10}$	2.94	<
methods	IDICL	$63.88{\pm}0.04$	1.61	$53.45{\pm}0.05$	2.32	$2.46{\pm}0.02$	23.62	$3.42{\pm}0.04$	19.16	$80.34{\pm}0.05$	2.17	$77.92{\pm}0.08$	3.70	
different data	CL4SRec	$63.71{\pm}0.14$	1.34	$53.43{\pm}0.05$	2.28	$2.41{\pm}0.03$	21.11	$3.29{\pm}0.06$	14.63	$80.14{\pm}0.08$	1.92	$77.02{\pm}0.05$	2.50	
augmentation	CoSeRec	$63.89{\pm}0.03$	1.62	$53.53{\pm}0.09$	2.47	$2.44{\pm}0.02$	22.61	$3.33{\pm}0.05$	16.03	$80.48{\pm}0.06$	2.35	$77.71{\pm}0.09$	3.42	
methods	DuoRec	$63.50{\pm}0.09$	1.00	$53.26{\pm}0.06$	1.95	$2.39{\pm}0.01$	20.10	3.11 ± 0.16	8.36	$80.03{\pm}0.09$	1.78	$76.85{\scriptstyle\pm0.09}$	2.28	
	AdaptSSR	$65.53{\pm}0.04$	4.23	$54.41{\pm}0.02$	4.15	2.61±0.03	31.16	3.73±0.03	29.97	$82.30{\pm}0.03$	4.67	$79.92{\pm}0.05$	6.36	
-														



When user modeling meets LLM

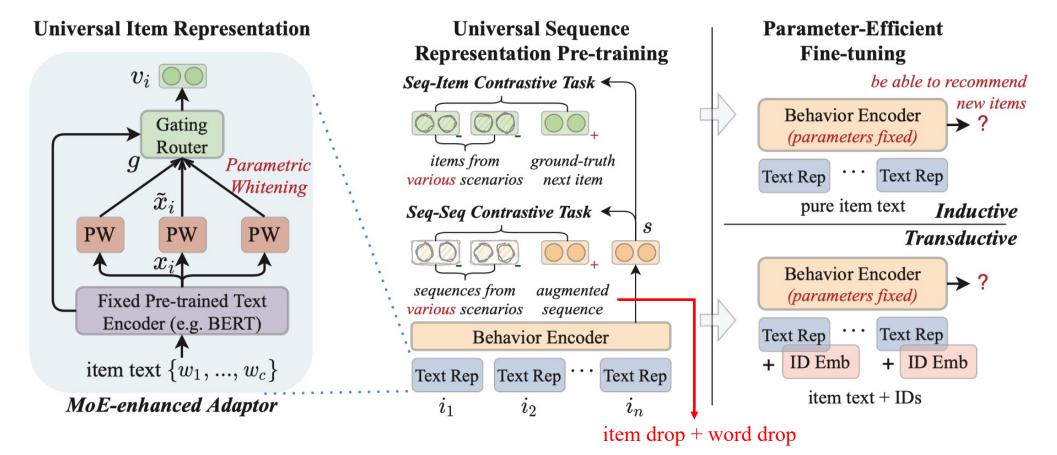
P5: Unify recommendation tasks into the text generation task via prompt learning.



Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

When user modeling meets LLM

UniSRec: Learn universal item/user representations based on text descriptions.

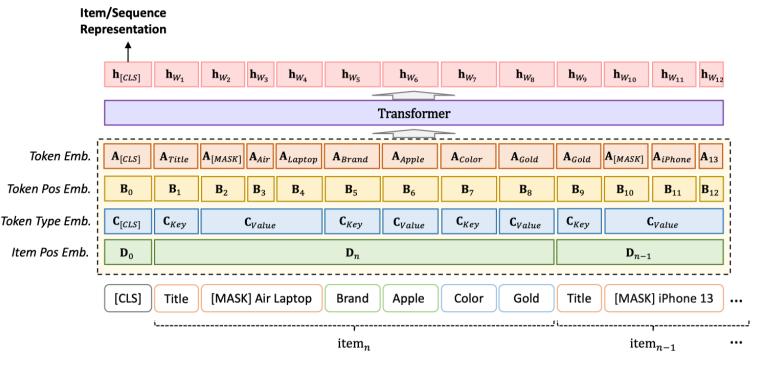


Hou et al. Towards Universal Sequence Representation Learning for Recommender Systems. KDD 2022.

When user modeling meets LLM

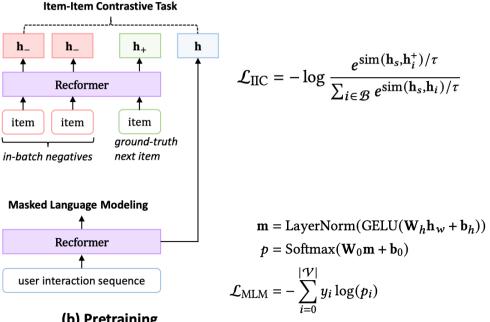
37

Recformer: Model user preferences and item features as language representations.



Title 2020 MacBook Air Laptop M1 Chip Key-value attribute pairs Brand Apple Gold Color Flatten Item "sentence" 2020 MacBook Air Laptop M1 Chip Brand Color Gold Apple

Figure 2: Model input construction. Flatten key-value attribute pairs into an item "sentence".



(a) Recformer Model Structure

Li et al. Text Is All You Need: Learning Language Representations for Sequential Recommendation. KDD 2023.

(b) Pretraining

When user modeling meets LLM

38

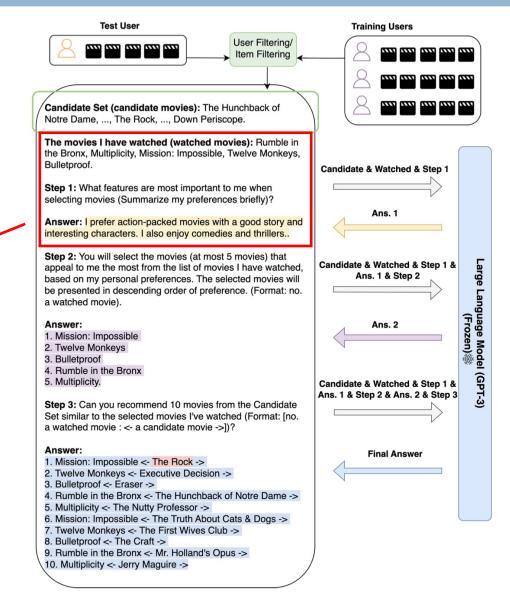
□ NIR: Let the LLM summarize the user's preferences based on user's historical behaviors.

The movies I have watched (watched movies): Rumble in the Bronx, Multiplicity, Mission: Impossible, Twelve Monkeys, Bulletproof.

Step 1: What features are most important to me when selecting movies (Summarize my preferences briefly)?

Answer: I prefer action-packed movies with a good story and interesting characters. I also enjoy comedies and thrillers..

Wang et al. Zero-Shot Next-Item Recommendation using Large Pretrained Language Models. arXiv 2023.



Outline

Background

- Model Pre-training for Item Modeling
- Model Pre-training for User Modeling
- **Future Directions**

Future Directions

40

United and Technological

Should we train large user models as LLMs?

Do we need new pre-training tasks/model structure?

□ Scaling law and emergent ability.

• How will the next-generation LLM-based recommendation system look like?

□ From the perspective of user-system interaction, the cost of dialogue is too high.

□ Learn to ask? Seems can be connected with CAT.

Beyond recommendation systems...

- □ The adaptation of LLMs in vertical domains.
- User capability modeling pre-training.

Reference

41

- Wu et al. Empowering News Recommendation with Pre-trained Language Models. *SIGIR* 2021.
- Liu et al. KRED: Knowledge-Aware Document Representation for News Recommendations. *RecSys* 2020.
- Sun et al. Multi-modal Knowledge Graphs for Recommender Systems. *CIKM* 2020.
- Qiu et al. U-BERT: Pre-training User Representations for Improved Recommendation. AAAI 2021.
- Gururangan et al. Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. *ACL* 2020.
- Yu et al. Tiny-NewsRec: Effective and Efficient PLM-based News Recommendation. *EMNLP* 2022.
- Li et al. Text Is All You Need: Learning Language Representations for Sequential Recommendation. *KDD* 2023.
- Touvron et al. LLaMA: Open and Efficient Foundation Language Models. *arXiv* 2023.
- Cui et al. ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases. arXiv 2023.
- Li et al. EcomGPT: Instruction-tuning Large Language Models with Chain-of-Task Tasks for E-commerce. *arXiv* 2023.
- Wang et al. HuaTuo: Tuning LLaMA Model with Chinese Medical Knowledge. *arXiv* 2023.
- Wang et al. Zero-Shot Next-Item Recommendation using Large Pretrained Language Models. *arXiv* 2023.
- Yuan et al. Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation. *SIGIR* 2020.
- Wu et al. PTUM: Pre-training User Model from Unlabeled User Behaviors via Self-supervision. *Findings of EMNLP* 2020.

Reference

42

- Mu et al. ID-Agnostic User Behavior Pre-training for Sequential Recommendation. *CCIR* 2022.
- Xie et al. Contrastive Learning for Sequential Recommendation. *ICDE* 2022.
- Gao et al. SimCSE: Simple Contrastive Learning of Sentence Embeddings. *EMNLP* 2021.
- Liu et al. Contrastive Self-supervised Sequential Recommendation with Robust Augmentation. *arXiv* 2021.
- Bian et al. Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. *CIKM* 2021.
- Yu et al. AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking. *NIPS* 2023.
- Yu et al. Multiple Pairwise Ranking with Implicit Feedback. *CIKM* 2018.
- Geng et al. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.
- Hou et al. Towards Universal Sequence Representation Learning for Recommender Systems. *KDD* 2022.
- Li et al. Text Is All You Need: Learning Language Representations for Sequential Recommendation. *KDD* 2023.
- <u>https://zhuanlan.zhihu.com/p/370859857</u>

Thanks! Q&A