

Untargeted Attack against Federated Recommendation Systems via Poisonous Item Embeddings and the Defense

Yang Yu^{1,2}, Qi Liu^{1,2*}, Likang Wu^{1,2}, Runlong Yu^{1,2}, Sanshi Lei Yu^{1,2}, Zaixi Zhang^{1,2}

¹Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China ²State Key Laboratory of Cognitive Intelligence

{yflyl613, wulk, yrunl, zaixi}@mail.ustc.edu.cn, qiliuql@ustc.edu.cn, meet.leiyu@gmail.com

Introduction

6 Upload

 L_2 Norm

Constrain

0.038

0.035

Malicious Client

 \longrightarrow Compute $\mathcal{L}_{\text{attack}}$ and $\tilde{\mathbf{g}}_{\text{item}}$

Adaptive

Clustering

Normal gradients

) Update

guser gpred gitem -

Background

- > Most existing recommenders are trained on centralized user data, which has the risk of data leakage and raises privacy concerns.
- > Several studies have applied federated learning (FL) to train privacy-preserving federated recommendation (FedRec) systems.
- \succ Unfortunately, FL is known to be vulnerable to poisoning attacks.
- > The untargeted attack that aims to degrade the overall performance of the FedRec system and its defense remains less explored.

Attack: *ClusterAttack*

Main Idea

- > Upload malicious gradients that converge item embeddings into several dense clusters.
- > The recommender tends to generate similar scores for these close items in the same cluster and mess up the ranking order.

1 Distribute

User Profile

Current Model

Servei

Run k-means on item embeddings

Local Model

Training

Local User

Model

Challenges

- \succ The attack method must be effective even with a small fraction of malicious clients.
- \blacktriangleright The attacker can only access a small set of data stored on the malicious clients.
- \succ The attack method needs to manipulate the model output on arbitrary inputs.
- > Many recommenders are naturally robust to malicious perturbation to a certain degree since they are trained on implicit user feedback with heavy noise.

Experiments

Datasets

- MovieLens-1M: a public movie recommendation dataset.
- Solution Gowalla: a public check-in dataset obtained from the Gowalla website.

Dataset #Users #Items #Actions Avg length Density

- Attack Procedure (See the paper for details)
- \blacktriangleright Apply *k*-means to split the item embeddings $\{\boldsymbol{v}_i\}_{i=1}^M$ into K clusters $\{C_i\}_{i=1}^K$ with centroids $\{c_i\}_{i=1}^K$.
- Compute the within-cluster variance and the malicious item embedding gradient.

$$\mathcal{L}_{ ext{attack}} = \sum_{i=1}^{K} \sum_{oldsymbol{v}_j \in C_i} \|oldsymbol{v}_j - oldsymbol{c}_i\|_2^2 \quad ilde{\mathbf{g}}_{oldsymbol{v}_i} = rac{\partial \mathcal{L}_{ ext{attack}}}{\partial oldsymbol{v}_i}$$

- \succ Compute the normal gradient [\mathbf{g}_{item} ; \mathbf{g}_{user} ; \mathbf{g}_{pred}] of each malicious client.
- \succ Clip the malicious gradient with an estimated norm of normal item embedding gradients.
- \succ Upload \mathbf{g}_{pred} and the clipped malicious item embedding gradient $\hat{\mathbf{g}}_{item}$ to the server, and update the local user model with \mathbf{g}_{user} .
- \succ Adjust the number of clusters K with the adaptive clustering mechanism based on \mathcal{L}_{attack} after each round of attack.

Defense: UNION

Client Side

- > Train the local recommendation model with an **additional contrastive learning task**.
- > Denote the item set interacted by the user as $\mathcal{V}_u = \{v_i\}_{i=1}^L$ and the entire item set as \mathcal{V} .
- For each $v_i \in \mathcal{V}_u$, randomly select another positive item $v_i^+ \in \mathcal{V}_u$ and P negative items $\{v_i^-\}_{i=1}^P \subseteq \mathcal{V} \setminus \mathcal{V}_u.$

$$\mathcal{L}_{cl} = -\sum_{i=1}^{L} \log \frac{e^{f(v_i)^{\mathsf{T}} f\left(v_i^{\mathsf{+}}\right)}}{1 - \sum_{i=1}^{L} \log \frac{e^{f(v_i)^{\mathsf{T}} f\left(v_i^{\mathsf{+}}\right)}}{$$

Dutubet				Trys. Iongui	Density
ML-1M	6,040	3,706	1,000,209	165.6	4.47%
Gowalla	29,858	40,981	1,585,043	53.1	0.13%

Detailed statistics of the two datasets.

Performance Comparisons

Modal	Attack	ML	-1M	Gowalla				
Model	Method	HR@5	NDCG@5	HR@5	NDCG@5			
	No Attack	0.03549 (-)	0.02226(-)	0.02523 (-)	0.01697 (-)			
MF	LabelFlip	0.03561 (-0.34%)	0.02238 (-0.54%)	0.02541 (-0.71%)	0.01711 (-0.82%)			
	FedAttack	0.03358 (5.38%)	0.02118 (4.85%)	0.02371 (6.02%)	0.01585 (6.60%)			
	Gaussian	0.03555 (-0.17%)	0.02224 (0.09%)	0.02528 (-0.20%)	0.01701 (-0.24%)			
	LIE	0.03259 (8.17%)	0.02062 (7.37%)	0.02316 (8.20%)	0.01571 (7.42%)			
	Fang	0.03038 (14.40%)	0.01897 (14.78%)	0.02131 (15.54%)	0.01448 (14.67%)			
	ClusterAttack	0.02451 (30.94%)	0.01545 (30.59%)	0.01664 (34.05%)	0.01117 (34.18%)			
SASRec	No Attack	0.10810 (-)	0.07053 (-)	0.03251 (-)	0.02217 (-)			
	LabelFlip	0.10857 (-0.43%)	0.07071 (-0.26%)	0.03270 (-0.58%)	0.02222 (-0.23%)			
	FedAttack	0.10013 (7.37%)	0.06572 (6.82%)	0.03054 (6.06%)	0.02087 (5.86%)			
	Gaussian	0.10769 (0.38%)	0.07055 (-0.03%)	0.03226 (0.77%)	0.02222 (-0.23%)			
	LIE	0.09677 (10.48%)	0.06281 (10.95%)	0.03008 (7.47%)	0.02021 (8.84%)			
	Fang	0.08964 (17.08%)	0.05909 (16.22%)	0.02797 (13.96%)	0.01883 (15.07%)			
	ClusterAttack	0.06547 (39.44%)	0.04130 (41.44%)	0.02223 (31.62%)	0.01544 (30.36%)			
	Model performance under different attack methods with different defense mechanisms.							

- $\sum_{i=1}^{N} \log \frac{1}{e^{f(v_i)^{\mathsf{T}} f(v_i^+)} + \sum_{j=1}^{P} e^{f(v_j)^{\mathsf{T}} f(v_j^-)}}$ **C**I
- \succ \mathcal{L}_{cl} can regularize the item embedding toward a uniform distribution in the space while training with the recommendation task.

Server Side

 \succ Estimate the uniformity of updated item embeddings for each received gradient.

$$d_i = \mathbb{E}_{x, y \stackrel{\text{i.i.d}}{\sim} p_{\text{data}}} \|f(x) - f(y)\|_2^2$$

- > Use the **Gap Statistics algorithm** to estimate the number of clusters in the set of estimated uniformity $\{d_i\}_{i=1}^n$.
- \blacktriangleright If the algorithm estimates that there is more than one cluster, we apply k-means to split $\{d_i\}_{i=1}^n$ into two clusters and filter out all the gradients belonging to the minor one.

Gradients and Uniformity Analysis

Impact of Adaptive Clustering

Influence of the Ratio of Malicious Clients

m%	No Attack	FedAttack	LIE	Fang	ClusterAttack	Performance of ClusterAttack
0.5%	0.03549	0.03491	0.03465	0.03426	0.03001	with different ratios of
1%	0.03549	0.03358	0.03259	0.03038	0.02451	malicious clients.

Defense Method	FedAttack	LIE	Fang	ClusterAttac
----------------	-----------	-----	------	--------------

0.26 0.3 0.24 0.25 0.24 0.25 0.24 0.25 0.30 0.35 0.26 0.26 0.28 0.4

MormBound+UNION 0.02	3490 0.03464	4 0.03464	0.03351
----------------------	--------------	-----------	---------

Performance of UNION