
Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Server

Update

UploadDistribute①

Malicious Client

Current Model

②

 Norm
Constrain

⑧

Local User
Model

④ Normal gradients

item embeddings
Run on

⑦

③

Local Data User Profile

Compute and

Local Model
Training

Adaptive
Clustering

⑤

⑥

Untargeted Attack against Federated Recommendation Systems
via Poisonous Item Embeddings and the Defense

Yang Yu1,2, Qi Liu1,2*, Likang Wu1,2, Runlong Yu1,2, Sanshi Lei Yu1,2, Zaixi Zhang1,2

Background
Ø Most existing recommenders are trained on centralized user data, which has the risk of data

leakage and raises privacy concerns.
Ø Several studies have applied federated learning (FL) to train privacy-preserving federated

recommendation (FedRec) systems.
Ø Unfortunately, FL is known to be vulnerable to poisoning attacks.
Ø The untargeted attack that aims to degrade the overall performance of the FedRec system

and its defense remains less explored.

Main Idea
Ø Upload malicious gradients that converge item embeddings into several dense clusters.
Ø The recommender tends to generate similar scores for these close items in the same cluster

and mess up the ranking order.

Performance Comparisons

Model performance under different attack methods with no defense.

Influence of the Ratio of Malicious Clients

Visualization of the uploaded gradients and the uniformity distribution in
different rounds of training (blue: benign clients, red: malicious clients).

Gradients and Uniformity Analysis

Model performance under different attack methods with different defense mechanisms.

Client Side
Ø Train the local recommendation model with an additional contrastive learning task.
Ø Denote the item set interacted by the user as 𝒱! = {𝑣"}"#$% and the entire item set as 𝒱.
Ø For each 𝑣" ∈ 𝒱!, randomly select another positive item 𝑣"& ∈ 𝒱! and 𝑃 negative items
{𝑣"'}"#$(⊆ 𝒱\𝒱!.

Server Side
Ø Estimate the uniformity of updated item embeddings for each received gradient.

Detailed statistics of the two datasets.

Ø Use the Gap Statistics algorithm to estimate the number of clusters in the set of estimated
uniformity {𝑑"}"#$) .

Ø If the algorithm estimates that there is more than one cluster, we apply 𝑘-means to split
{𝑑"}"#$) into two clusters and filter out all the gradients belonging to the minor one.

Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Datasets
Ø MovieLens-1M: a public movie recommendation dataset.
Ø Gowalla: a public check-in dataset obtained from the Gowalla website.

m% No Attack FedAttack LIE Fang ClusterAttack

0.5% 0.03549 0.03491 0.03465 0.03426 0.03001
1% 0.03549 0.03358 0.03259 0.03038 0.02451

Table 4: Attack performance of different untargeted attacks
with different ratios of malicious clients.

Defense Method FedAttack LIE Fang ClusterAttack

No Defense 0.03195 0.03147 0.02793 0.01950
MultiKrum+UNION 0.03438 0.03447 0.03454 0.03291

MormBound+UNION 0.03490 0.03464 0.03464 0.03351

Table 5: Defense performance of UNION against different
untargeted attacks with 5% malicious clients.

not greatly hurt the model performance, we combine them
with our UNION mechanism respectively and test their de-
fense performance against different attacks. The results are
shown as the right two groups in Figure 2. We first find that
our UNION mechanism can significantly improve the resis-
tance of these defense methods against ClusterAttack. The
reason is that the additional CL task optimizes the item em-
beddings toward a uniform distribution, which is opposite
to the goal of ClusterAttack. Besides, the server also keeps
filtering out the gradients leading to abnormally distributed
item embeddings. Thus, the goal of ClusterAttack cannot be
effectively achieved. We also find that our UNION mech-
anism enhances the performance of these defense methods
against other baseline attacks. This verifies that regularizing
the distribution of item embeddings is beneficial to protect-
ing FedRec systems from various untargeted attacks.

Since our UNION mechanism modifies the training al-
gorithm on the client side, which can be known by the at-
tacker via malicious clients, we wonder whether the attacker
can avoid detection by generating malicious gradients along
with the CL task. Thus, we further evaluate the defense per-
formance of UNION against a new attack method Cluster-

Attack+CL, which generates the malicious gradient by opti-
mizing L0

attack = Lattack + ↵ · Lcl. As shown in Table 3,
the extra CL task weakens the attack effect of ClusterAttack.
This is because Lattack tries to converge the item embed-
dings into clusters, while Lcl regularizes these embeddings
to be uniformly distributed. Such opposite goals cannot be
jointly optimized well and lead to poor attack effects.

5.5 Influence of the Ratio of Malicious Clients

(RQ4)

In this subsection, we further conduct several experiments
to explore how the ratio of malicious clients affects the per-
formance of our methods. First, we set the ratio of malicious
clients m% as 0.5% and 1% respectively and compare the
performance of our ClusterAttack with various baseline un-
targeted attacks. The HR@5 of the model are shown in Ta-
ble 4. It shows that most existing attack methods are ineffec-
tive with very few malicious clients, while our ClusterAttack

can still degrade the model performance by 15.49% even
with 0.5% malicious clients. This verifies that our malicious
gradients which aim to converge the item embeddings into

Figure 3: Impact of adaptive clustering.

dense clusters are highly effective in perturbing the rank-
ing order of the FedRec system. Next, to validate the ro-
bustness of our UNION mechanism, we increase the ratio of
malicious clients to 5% and evaluate its performance against
various attacks. The HR@5 of the model shown in Table 5
demonstrate that after combining with our UNION mech-
anism, MultiKrum+UNION and NormBound+UNION can
well protect the FedRec system against various untargeted
attacks even with a large number of malicious clients.

5.6 Impact of Adaptive Clustering (RQ5)

In this subsection, we conduct experiments to verify the im-
pact of the adaptive clustering mechanism in ClusterAttack.
We set the initial number of clusters K as {1, 2, 4, 8, 16} re-
spectively and compare the attack performance of ClusterAt-

tack and its variant with the adaptive clustering mechanism
removed. The results on the ML-1M dataset are shown in
Figure 3. We find that without the adaptive clustering mech-
anism, the attack effect does not always improve with the
decreasing number of clusters as intuitively thought. This is
because when the value of K is too small, the attack loss
cannot effectively converge with limited malicious clients.
Results also show that the attack effect varies significantly
with different numbers of clusters. The attack performance
is consistently better when the adaptive clustering mecha-
nism is adopted to adjust the value of K based on the attack
effect after each round of attack, and it is less influenced by
the selection of the initial number of clusters.

5.7 Gradients and Uniformity Analysis (RQ6)

To better understand how difficult it is to defend ClusterAt-

tack, we save all the model gradients received by the server
during the training procedure. Every 10 rounds, we use PCA
to reduce the dimension of these saved gradients and visu-
alize them in the first row of Figure 4. We find that these
malicious gradients have similar PCA components to most
normal gradients, while some gradients uploaded by benign
clients seem to be outliers. This verifies that it is quite dif-
ficult to distinguish these malicious gradients due to the
highly non-IID training data on each client. We further save
all the item embedding uniformities estimated by the server
with our UNION mechanism and its variant when the CL
task on the client side is removed. We use kernel density
estimation (KDE) (Parzen 1962) to estimate their probabil-
ity density distributions, which are visualized in the last two

m% No Attack FedAttack LIE Fang ClusterAttack

0.5% 0.03549 0.03491 0.03465 0.03426 0.03001
1% 0.03549 0.03358 0.03259 0.03038 0.02451

Table 4: Attack performance of different untargeted attacks
with different ratios of malicious clients.

Defense Method FedAttack LIE Fang ClusterAttack

No Defense 0.03195 0.03147 0.02793 0.01950
MultiKrum+UNION 0.03438 0.03447 0.03454 0.03291

MormBound+UNION 0.03490 0.03464 0.03464 0.03351

Table 5: Defense performance of UNION against different
untargeted attacks with 5% malicious clients.

not greatly hurt the model performance, we combine them
with our UNION mechanism respectively and test their de-
fense performance against different attacks. The results are
shown as the right two groups in Figure 2. We first find that
our UNION mechanism can significantly improve the resis-
tance of these defense methods against ClusterAttack. The
reason is that the additional CL task optimizes the item em-
beddings toward a uniform distribution, which is opposite
to the goal of ClusterAttack. Besides, the server also keeps
filtering out the gradients leading to abnormally distributed
item embeddings. Thus, the goal of ClusterAttack cannot be
effectively achieved. We also find that our UNION mech-
anism enhances the performance of these defense methods
against other baseline attacks. This verifies that regularizing
the distribution of item embeddings is beneficial to protect-
ing FedRec systems from various untargeted attacks.

Since our UNION mechanism modifies the training al-
gorithm on the client side, which can be known by the at-
tacker via malicious clients, we wonder whether the attacker
can avoid detection by generating malicious gradients along
with the CL task. Thus, we further evaluate the defense per-
formance of UNION against a new attack method Cluster-

Attack+CL, which generates the malicious gradient by opti-
mizing L0

attack = Lattack + ↵ · Lcl. As shown in Table 3,
the extra CL task weakens the attack effect of ClusterAttack.
This is because Lattack tries to converge the item embed-
dings into clusters, while Lcl regularizes these embeddings
to be uniformly distributed. Such opposite goals cannot be
jointly optimized well and lead to poor attack effects.

5.5 Influence of the Ratio of Malicious Clients

(RQ4)

In this subsection, we further conduct several experiments
to explore how the ratio of malicious clients affects the per-
formance of our methods. First, we set the ratio of malicious
clients m% as 0.5% and 1% respectively and compare the
performance of our ClusterAttack with various baseline un-
targeted attacks. The HR@5 of the model are shown in Ta-
ble 4. It shows that most existing attack methods are ineffec-
tive with very few malicious clients, while our ClusterAttack

can still degrade the model performance by 15.49% even
with 0.5% malicious clients. This verifies that our malicious
gradients which aim to converge the item embeddings into

Figure 3: Impact of adaptive clustering.

dense clusters are highly effective in perturbing the rank-
ing order of the FedRec system. Next, to validate the ro-
bustness of our UNION mechanism, we increase the ratio of
malicious clients to 5% and evaluate its performance against
various attacks. The HR@5 of the model shown in Table 5
demonstrate that after combining with our UNION mech-
anism, MultiKrum+UNION and NormBound+UNION can
well protect the FedRec system against various untargeted
attacks even with a large number of malicious clients.

5.6 Impact of Adaptive Clustering (RQ5)

In this subsection, we conduct experiments to verify the im-
pact of the adaptive clustering mechanism in ClusterAttack.
We set the initial number of clusters K as {1, 2, 4, 8, 16} re-
spectively and compare the attack performance of ClusterAt-

tack and its variant with the adaptive clustering mechanism
removed. The results on the ML-1M dataset are shown in
Figure 3. We find that without the adaptive clustering mech-
anism, the attack effect does not always improve with the
decreasing number of clusters as intuitively thought. This is
because when the value of K is too small, the attack loss
cannot effectively converge with limited malicious clients.
Results also show that the attack effect varies significantly
with different numbers of clusters. The attack performance
is consistently better when the adaptive clustering mecha-
nism is adopted to adjust the value of K based on the attack
effect after each round of attack, and it is less influenced by
the selection of the initial number of clusters.

5.7 Gradients and Uniformity Analysis (RQ6)

To better understand how difficult it is to defend ClusterAt-

tack, we save all the model gradients received by the server
during the training procedure. Every 10 rounds, we use PCA
to reduce the dimension of these saved gradients and visu-
alize them in the first row of Figure 4. We find that these
malicious gradients have similar PCA components to most
normal gradients, while some gradients uploaded by benign
clients seem to be outliers. This verifies that it is quite dif-
ficult to distinguish these malicious gradients due to the
highly non-IID training data on each client. We further save
all the item embedding uniformities estimated by the server
with our UNION mechanism and its variant when the CL
task on the client side is removed. We use kernel density
estimation (KDE) (Parzen 1962) to estimate their probabil-
ity density distributions, which are visualized in the last two

Performance of ClusterAttack
with different ratios of

malicious clients.

Performance of UNION
against different attacks with

5% malicious clients.

Defense: UNION

Attack: ClusterAttack

Algorithm 2: Defense Procedure on the Server Side
Input: A set of received model gradients�

g(i)
 n

i=1
=
nh

g(i)

item;g(i)

pred

ion

i=1
, current global

model ⇥ = [⇥item;⇥pred], learning rate ⌘, the
item set I, and number of random sampling T .

Output: A set of filtered model gradients Gfilter.
1 for i 1 to n do

2 Update the item model ⇥(i)0
item ⇥item � ⌘ · g(i)

item;
3 Randomly select T items {vi}T

i=1 from I to estimate
the uniformity of updated item embeddings
di 2

T (T�1)

PT
j=1

PT
k=j+1 kf(vj)� f(vk)k22;

4 end for

5 if GapStatistics({di}ni=1) then

6 Running k-means to split {di}ni=1 into two clusters;
7 Gfilter all the gradients in the larger cluster;
8 else

9 Gfilter
�
g(i)

 n

i=1
;

10 end if

11 return Gfilter

Considering that the number of clusters K will greatly
impact the attack effect, we further design an adaptive clus-
tering mechanism to automatically adjust the value of K
after each round of attack (Step 8), which is shown in Al-

gorithm 1. Since the only feedback of the attack effect for
the attacker is Lattack in Equation (2), we track it during
the attack process and compute its bias-corrected exponen-
tial moving average L̂attack. We use two counters ninc and
ndec to record the number of rounds in which the smoothed
attack loss increases and decreases, respectively. If L̂attack

increased in most of the past few rounds, we assume that
the current value of K is too small, and the attack loss can-
not converge well. Thus, we increase the value of K to make
the attack easier. Contrarily, if L̂attack keeps descending, we
further decrease the value of K to perform a stronger attack.

4.2 UNION Mechanism

Our ClusterAttack reveals that maintaining the distribution
of item embeddings is essential for protecting FedRec sys-
tems. Thus, we further propose a uniformity-based defense
mechanism (UNION) that regularizes the item embeddings
toward a uniform distribution in the space with a contrastive
learning task. Then the server filters out these malicious gra-
dients that lead to abnormally distributed item embeddings.

Client Side. We require all benign clients to train the local
recommendation model with an additional contrastive learn-
ing (CL) task. Specifically, denote the item set interacted by
a client as Iu = {vi}Li=1. For each vi 2 Iu, we randomly
select another item v+

i from Iu as the positive sample, and P
items {v-

i }
P

i=1 from I\Iu as the negative samples. We adopt
InfoNCE (Oord, Li, and Vinyals 2018) as the contrastive loss
function. It is formulated as follows:

Lcl = �
LX

i=1

log
ef(vi)

Tf(v+
i)

ef(vi)
Tf(v+

i) +
PP

j=1 e
f(vi)

Tf(v-
j)
, (4)

Algorithm 3: Gap Statistics
Input: A set of estimated uniformity {di}ni=1, and number

of sampling B.
Output: Whether there is more than one cluster.

1

n
d̃i
on

i=1
 apply min-max normalization to {di}ni=1;

2 for k 2 {1, 2} in parallel do

3 Apply k-means on
n
d̃i
on

i=1
to get clusters {Di}ki=1

with centroids {µi}ki=1;

4 wk
Pk

i=1

P
d̃j2Di

���d̃j � µi

���
2

2
;

5 for b 1 to B do

6 Uniformly sample n points {ti}ni=1 from [0, 1];
7 Apply k-means on {ti}ni=1 to get clusters

{D0
i}

k
i=1 with centoids {µ0

i}
k
i=1;

8 w⇤
b

Pk
i=1

P
tj2D0

i
ktj � µ0

ik
2
2;

9 end for

10 w = 1
B

PB

b=1 log (w
⇤
b);

11 gapk w � log (wk);

12 sk
q

1+B
B2

PB

b=1 [log(w
⇤
b)� w]2;

13 end for

14 return gap1 < gap2 � s2

where f denotes the item model. The overall loss function
on the client side is L = Lrec + ↵ · Lcl. As proved by Wang
and Isola (2020), the contrastive loss Lcl asymptotically op-
timizes the uniformity of the distribution induced from the
learned embeddings, which is measured as follows:

Luniform(f ; t) = E
x,y

i.i.d⇠pdata
e�tkf(x)�f(y)k2

2 , t > 0. (5)

Therefore, the additional CL task can regularize the item em-
beddings toward a uniform distribution in the space while
training with the recommendation task. Since such an opti-
mization objective is opposite to the goal of ClusterAttack,
the CL task can mitigate its attack effect and also makes it
easier for the server to distinguish these malicious gradients.

Server Side. Since now all benign clients train the model
with the CL task that optimizes the item embeddings toward
a uniform distribution, we let the server estimate the unifor-
mity of updated item embeddings for each received gradient.
Here we measure the uniformity in terms of the average L2

distance between any two item embeddings, i.e.,

L0
uniform(f) = E

x,y
i.i.d⇠pdata

kf(x)� f(y)k22 , (6)

which is a simplified version of Equation (5). The defense
procedure on the server side is shown in Algorithm 2.
We further adopt the Gap Statistics algorithm (Tibshirani,
Walther, and Hastie 2001) to estimate the number of clusters
in the set of estimated uniformity {di}ni=1, which is shown in
Algorithm 3. Generally, it compares the change of within-
cluster dispersion with that expected under a uniform distri-
bution to determine the number of clusters in a set of data. If
the algorithm estimates that there is more than one cluster,
we believe there are some malicious gradients that lead to
abnormally distributed item embeddings. Hence, we further

Algorithm 2: Defense Procedure on the Server Side
Input: A set of received model gradients�

g(i)
 n

i=1
=
nh

g(i)

item;g(i)

pred

ion

i=1
, current global

model ⇥ = [⇥item;⇥pred], learning rate ⌘, the
item set I, and number of random sampling T .

Output: A set of filtered model gradients Gfilter.
1 for i 1 to n do

2 Update the item model ⇥(i)0
item ⇥item � ⌘ · g(i)

item;
3 Randomly select T items {vi}T

i=1 from I to estimate
the uniformity of updated item embeddings
di 2

T (T�1)

PT
j=1

PT
k=j+1 kf(vj)� f(vk)k22;

4 end for

5 if GapStatistics({di}ni=1) then

6 Running k-means to split {di}ni=1 into two clusters;
7 Gfilter all the gradients in the larger cluster;
8 else

9 Gfilter
�
g(i)

 n

i=1
;

10 end if

11 return Gfilter

Considering that the number of clusters K will greatly
impact the attack effect, we further design an adaptive clus-
tering mechanism to automatically adjust the value of K
after each round of attack (Step 8), which is shown in Al-

gorithm 1. Since the only feedback of the attack effect for
the attacker is Lattack in Equation (2), we track it during
the attack process and compute its bias-corrected exponen-
tial moving average L̂attack. We use two counters ninc and
ndec to record the number of rounds in which the smoothed
attack loss increases and decreases, respectively. If L̂attack

increased in most of the past few rounds, we assume that
the current value of K is too small, and the attack loss can-
not converge well. Thus, we increase the value of K to make
the attack easier. Contrarily, if L̂attack keeps descending, we
further decrease the value of K to perform a stronger attack.

4.2 UNION Mechanism

Our ClusterAttack reveals that maintaining the distribution
of item embeddings is essential for protecting FedRec sys-
tems. Thus, we further propose a uniformity-based defense
mechanism (UNION) that regularizes the item embeddings
toward a uniform distribution in the space with a contrastive
learning task. Then the server filters out these malicious gra-
dients that lead to abnormally distributed item embeddings.

Client Side. We require all benign clients to train the local
recommendation model with an additional contrastive learn-
ing (CL) task. Specifically, denote the item set interacted by
a client as Iu = {vi}Li=1. For each vi 2 Iu, we randomly
select another item v+

i from Iu as the positive sample, and P
items {v-

i }
P

i=1 from I\Iu as the negative samples. We adopt
InfoNCE (Oord, Li, and Vinyals 2018) as the contrastive loss
function. It is formulated as follows:

Lcl = �
LX

i=1

log
ef(vi)

Tf(v+
i)

ef(vi)
Tf(v+

i) +
PP

j=1 e
f(vi)

Tf(v-
j)
, (4)

Algorithm 3: Gap Statistics
Input: A set of estimated uniformity {di}ni=1, and number

of sampling B.
Output: Whether there is more than one cluster.

1

n
d̃i
on

i=1
 apply min-max normalization to {di}ni=1;

2 for k 2 {1, 2} in parallel do

3 Apply k-means on
n
d̃i
on

i=1
to get clusters {Di}ki=1

with centroids {µi}ki=1;

4 wk
Pk

i=1

P
d̃j2Di

���d̃j � µi

���
2

2
;

5 for b 1 to B do

6 Uniformly sample n points {ti}ni=1 from [0, 1];
7 Apply k-means on {ti}ni=1 to get clusters

{D0
i}

k
i=1 with centoids {µ0

i}
k
i=1;

8 w⇤
b

Pk
i=1

P
tj2D0

i
ktj � µ0

ik
2
2;

9 end for

10 w = 1
B

PB

b=1 log (w
⇤
b);

11 gapk w � log (wk);

12 sk
q

1+B
B2

PB

b=1 [log(w
⇤
b)� w]2;

13 end for

14 return gap1 < gap2 � s2

where f denotes the item model. The overall loss function
on the client side is L = Lrec + ↵ · Lcl. As proved by Wang
and Isola (2020), the contrastive loss Lcl asymptotically op-
timizes the uniformity of the distribution induced from the
learned embeddings, which is measured as follows:

Luniform(f ; t) = E
x,y

i.i.d⇠pdata
e�tkf(x)�f(y)k2

2 , t > 0. (5)

Therefore, the additional CL task can regularize the item em-
beddings toward a uniform distribution in the space while
training with the recommendation task. Since such an opti-
mization objective is opposite to the goal of ClusterAttack,
the CL task can mitigate its attack effect and also makes it
easier for the server to distinguish these malicious gradients.

Server Side. Since now all benign clients train the model
with the CL task that optimizes the item embeddings toward
a uniform distribution, we let the server estimate the unifor-
mity of updated item embeddings for each received gradient.
Here we measure the uniformity in terms of the average L2

distance between any two item embeddings, i.e.,

di = E
x,y

i.i.d⇠pdata
kf(x)� f(y)k22 , (6)

which is a simplified version of Equation (5). The defense
procedure on the server side is shown in Algorithm 2.
We further adopt the Gap Statistics algorithm (Tibshirani,
Walther, and Hastie 2001) to estimate the number of clusters
in the set of estimated uniformity {di}ni=1, which is shown in
Algorithm 3. Generally, it compares the change of within-
cluster dispersion with that expected under a uniform distri-
bution to determine the number of clusters in a set of data. If
the algorithm estimates that there is more than one cluster,
we believe there are some malicious gradients that lead to
abnormally distributed item embeddings. Hence, we further

Ø ℒ*+ can regularize the item embedding toward a uniform distribution in the space while
training with the recommendation task.

Attack Procedure (See the paper for details)
Ø Apply 𝑘-means to split the item

embeddings {𝒗"}"#$, into 𝐾 clusters
{𝐶"}"#$- with centroids {𝒄"}"#$- .

Ø Compute the within-cluster variance and
the malicious item embedding gradient.

Introduction

Experiments

Figure 1: The procedure of our ClusterAttack.

L2 regularization to train the local model, i.e., the gradient
g is generated by optimizing the following loss function:

Lrec = � log (� (ŷp � ŷn)) + � k⇥k22 , (1)

where � is the sigmoid function. ŷp and ŷn are the predicted
ranking scores of the positive and negative items. Next, the
client uploads [gitem;gpred] to the server and updates the lo-
cal user model with guser, which is not uploaded due to its
privacy sensitivity (Wu et al. 2021b,c). Finally, the server
aggregates all the received gradients with certain aggrega-
tion rules and updates the global model. Such training round
proceeds iteratively until convergence.

3.2 Threat Model

Attack Goal. The attacker aims to degrade the overall per-
formance of the FedRec system on arbitrary inputs.

Attack Capability and Knowledge. The attacker controls
a set of malicious clients Umal which accounts for m% of U .
As there are usually millions of users in a recommender sys-
tem, we assume that m should be small (e.g., m = 1). Fol-
lowing previous works (Wu et al. 2022; Zhang et al. 2022a),
we assume that the attacker has access to the training code,
local model, and user data on the devices of malicious clients
while cannot access the data or gradients of other benign
clients. The attacker can arbitrarily modify the gradients up-
loaded by the malicious clients. We also assume the attacker
does not know the aggregation rule used by the server.

4 Methodology

In this section, we introduce the details of our untargeted
model poisoning attack method ClusterAttack and our de-
fense mechanism UNION for FedRec systems.

4.1 ClusterAttack

To degrade the overall performance of FedRec systems, our
ClusterAttack aims to poison the item embeddings, which
are widely used in most recommendation models (Kang and
McAuley 2018; Wang et al. 2019). Since a recommenda-
tion model generally predicts the ranking score based on a
user embedding and an item embedding, our main idea is to

Algorithm 1: Adaptive Clustering
Input: Number of clusters K, range of number of clusters

[Kmin,Kmax], threshold R, and decay rate �.
Init: Set L̃(0)

attack, ninc, ndec and t as 0.
// Repeat after each round of attack

1 t t+ 1;
2 Calculate L(t)

attack with Equation (2);
3 L̃(t)

attack � · L̃(t�1)

attack + (1� �) · L(t)

attack;
4 L̂(t)

attack L̃(t)

attack/
�
1� �t

�
;

5 if L̂(t)

attack > L̂(t�1)

attack then ninc ninc + 1;
6 else ndec ndec + 1;
7 if ninc � ndec > R then

8 K min
�⌅
K +

p
Kmax �K

⇧
,Kmax

�
;

9 Reset ninc, ndec and t as 0;
10 end if

11 if ndec � ninc > R then

12 K max
�⌅
K �

p
K �Kmin

⇧
,Kmin

�
;

13 Reset ninc, ndec and t as 0;
14 end if

converge these item embeddings into several dense clusters.
Thus, the recommender tends to generate similar scores for
these close items in the same cluster and mess up the ranking
order. Figure 1 illustrates the procedure of ClusterAttack.

When selected for model training, the malicious client re-
ceives the latest global model from the server, which con-
tains the item embeddings {vi}M

i=1 (Step 1). We first apply
k-means (Lloyd 1982) to split them into K clusters {Ci}K

i=1

with centroids {ci}K

i=1 (Step 2). Then we compute the fol-
lowing loss function to measure the within-cluster variance:

Lattack =
KX

i=1

X

vj2Ci

kvj � cik22 . (2)

The malicious gradient of each item embedding is computed
to minimize the above attack loss, i.e., g̃vi

= @Lattack/@vi

(Step 3). To make our attack stealthier, we further clip g̃vi

with an estimated norm of normal item embedding gradi-
ents. Specifically, for each malicious client u(j) 2 Umal, we
compute the normal gradient with the original loss function
Lrec and his local training data (Step 4). Then we calcu-
late the mean µ and standard deviation � of the L2 norms
of all normal item embedding gradients. Assuming these
norms follow a Gaussian distribution, we generate a reason-
able norm bound b(j)i = µ+ �(j)

i � for each item embedding
vi on the malicious client u(j), where �(j)

i is a number ran-
domly sampled from [0, 3]. Therefore, the clipped malicious
item embedding gradients are formulated as follows:

ĝ(j)
vi

=
g̃vi

max
�
1, kg̃vik2 /b

(j)

i

� . (3)

The malicious gradient of the item model is set as ĝ(j)

item =⇥
ĝ(j)
v1
; ĝ(j)

v2
; · · · ; ĝ(j)

vM

⇤
. Finally, the malicious client uploads

ĝ(j) =
h
ĝ(j)

item;g
(j)

pred

i
to the server and updates its local user

model with the normal gradient g(j)
user (Step 6 & 7).

Figure 1: The procedure of our ClusterAttack.

L2 regularization to train the local model, i.e., the gradient
g is generated by optimizing the following loss function:

Lrec = � log (� (ŷp � ŷn)) + � k⇥k22 , (1)

where � is the sigmoid function. ŷp and ŷn are the predicted
ranking scores of the positive and negative items. Next, the
client uploads [gitem;gpred] to the server and updates the lo-
cal user model with guser, which is not uploaded due to its
privacy sensitivity (Wu et al. 2021b,c). Finally, the server
aggregates all the received gradients with certain aggrega-
tion rules and updates the global model. Such training round
proceeds iteratively until convergence.

3.2 Threat Model

Attack Goal. The attacker aims to degrade the overall per-
formance of the FedRec system on arbitrary inputs.

Attack Capability and Knowledge. The attacker controls
a set of malicious clients Umal which accounts for m% of U .
As there are usually millions of users in a recommender sys-
tem, we assume that m should be small (e.g., m = 1). Fol-
lowing previous works (Wu et al. 2022; Zhang et al. 2022a),
we assume that the attacker has access to the training code,
local model, and user data on the devices of malicious clients
while cannot access the data or gradients of other benign
clients. The attacker can arbitrarily modify the gradients up-
loaded by the malicious clients. We also assume the attacker
does not know the aggregation rule used by the server.

4 Methodology

In this section, we introduce the details of our untargeted
model poisoning attack method ClusterAttack and our de-
fense mechanism UNION for FedRec systems.

4.1 ClusterAttack

To degrade the overall performance of FedRec systems, our
ClusterAttack aims to poison the item embeddings, which
are widely used in most recommendation models (Kang and
McAuley 2018; Wang et al. 2019). Since a recommenda-
tion model generally predicts the ranking score based on a
user embedding and an item embedding, our main idea is to

Algorithm 1: Adaptive Clustering
Input: Number of clusters K, range of number of clusters

[Kmin,Kmax], threshold R, and decay rate �.
Init: Set L̃(0)

attack, ninc, ndec and t as 0.
// Repeat after each round of attack

1 t t+ 1;
2 Calculate L(t)

attack with Equation (2);
3 L̃(t)

attack � · L̃(t�1)

attack + (1� �) · L(t)

attack;
4 L̂(t)

attack L̃(t)

attack/
�
1� �t

�
;

5 if L̂(t)

attack > L̂(t�1)

attack then ninc ninc + 1;
6 else ndec ndec + 1;
7 if ninc � ndec > R then

8 K min
�⌅
K +

p
Kmax �K

⇧
,Kmax

�
;

9 Reset ninc, ndec and t as 0;
10 end if

11 if ndec � ninc > R then

12 K max
�⌅
K �

p
K �Kmin

⇧
,Kmin

�
;

13 Reset ninc, ndec and t as 0;
14 end if

converge these item embeddings into several dense clusters.
Thus, the recommender tends to generate similar scores for
these close items in the same cluster and mess up the ranking
order. Figure 1 illustrates the procedure of ClusterAttack.

When selected for model training, the malicious client re-
ceives the latest global model from the server, which con-
tains the item embeddings {vi}M

i=1 (Step 1). We first apply
k-means (Lloyd 1982) to split them into K clusters {Ci}K

i=1

with centroids {ci}K

i=1 (Step 2). Then we compute the fol-
lowing loss function to measure the within-cluster variance:

Lattack =
KX

i=1

X

vj2Ci

kvj � cik22 . (2)

The malicious gradient of each item embedding is computed
to minimize the above attack loss, i.e., g̃vi = @Lattack/@vi

(Step 3). To make our attack stealthier, we further clip g̃vi

with an estimated norm of normal item embedding gradi-
ents. Specifically, for each malicious client u(j) 2 Umal, we
compute the normal gradient with the original loss function
Lrec and his local training data (Step 4). Then we calcu-
late the mean µ and standard deviation � of the L2 norms
of all normal item embedding gradients. Assuming these
norms follow a Gaussian distribution, we generate a reason-
able norm bound b(j)i = µ+ �(j)

i � for each item embedding
vi on the malicious client u(j), where �(j)

i is a number ran-
domly sampled from [0, 3]. Therefore, the clipped malicious
item embedding gradients are formulated as follows:

g̃vi =
@Lattack

@vi
(3)

The malicious gradient of the item model is set as ĝ(j)

item =⇥
ĝ(j)
v1
; ĝ(j)

v2
; · · · ; ĝ(j)

vM

⇤
. Finally, the malicious client uploads

ĝ(j) =
h
ĝ(j)

item;g
(j)

pred

i
to the server and updates its local user

model with the normal gradient g(j)
user (Step 6 & 7).

1Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China
2State Key Laboratory of Cognitive Intelligence

Ø Compute the normal gradient [𝐠./01; 𝐠2304; 𝐠5406] of each malicious client.
Ø Clip the malicious gradient with an estimated norm of normal item embedding gradients.
Ø Upload 𝐠5406 and the clipped malicious item embedding gradient 5𝐠./01 to the server, and

update the local user model with 𝐠2304.
Ø Adjust the number of clusters 𝐾 with the adaptive clustering mechanism based on ℒ7//7*8

after each round of attack.

Impact of Adaptive Clustering

Challenges
Ø The attack method must be effective even with a small fraction of malicious clients.
Ø The attacker can only access a small set of data stored on the malicious clients.
Ø The attack method needs to manipulate the model output on arbitrary inputs.
Ø Many recommenders are naturally robust to malicious perturbation to a certain degree since

they are trained on implicit user feedback with heavy noise.

Paper Code{yflyl613, wulk, yrunl, zaixi}@mail.ustc.edu.cn, qiliuql@ustc.edu.cn, meet.leiyu@gmail.com

