
Untargeted Attack Against Federated Recommendation
Systems via Poisonous Item Embeddings and the Defense

Yang Yu1,2, Qi Liu1,2*, Likang Wu1,2, Runlong Yu1,2, Sanshi Lei Yu1,2, Zaixi Zhang1,2

1

1Anhui Province Key Laboratory of Big Data Analysis and Application,
School of Computer Science and Technology, University of Science and Technology of China

2 State Key Laboratory of Cognitive Intelligence

Introduction

¨ Recommender systems are widely used to alleviate the information overload problem.
¨ Most existing recommender systems are trained on centralized user data.

o Risk of data leakage.
o Privacy concerns.

¨ Privacy regulations (e.g., GDPR, CCPA) make it more difficult to collect user data for
centralized model training.

2

Introduction

¨ Federated learning (FL) enables multiple clients to collaboratively learn a global model
without sharing their local data.

¨ Several studies have applied FL to train privacy-preserving federated recommendation
(FedRec) systems.

¨ Unfortunately, FL is known to be vulnerable to poisoning attacks.
o Targeted Attack

n Increase the exposure rate of certain target items.

o Untargeted Attack
n Degrade the overall performance of the FedRec system.
n Also known as the denial-of-service attack.
n Continuously disrupt the user experience → Severe losses of customers and revenue.

3

Introduction

¨ Challenges
o The attack method must be effective even with a small fraction of malicious clients.
o The attacker can only access a small set of data stored on the malicious clients.
o The attack needs to manipulate the model output on arbitrary inputs.
o Many recommenders are naturally robust to malicious perturbation to a certain degree.

¨ In this work
o ClusterAttack: an effective and covert untargeted model poisoning attack method.
o UNION: a general uniformity-based defense mechanism.

4

Preliminaries

¨ Federated Recommendation Systems
o The parameters of the recommendation model 𝚯 = [𝚯!"#$; 𝚯%&#'; 𝚯('#)].
o Standard FL procedure

5

Attacker

① Distribute global model 𝚯!"#$; 𝚯%&#' .
② Compute local gradients
𝐠 = 𝐠!"#$; 𝐠()#&; 𝐠%&#' .

③ Upload 𝐠!"#$; 𝐠%&#' and
update local 𝚯()#& with 𝐠()#&.

④Aggregate and update global model.
Malicious
Gradients

① Client #1

②
③

Server④

𝑛 randomly
selected clients

…
Client #2

Client #𝑛

¨ Threat Model
o 𝑚% (typically small, e.g., 1%) of clients are controlled by the attacker.
o The attacker knows the training code, local model, and user data of malicious clients.
o The attacker cannot access the data or gradients of other benign clients.

Methodology

¨ ClusterAttack
o The recommendation model generally predicts the ranking score based on the user embedding and the

item embedding.
o Upload malicious gradients that converge item embeddings into several dense clusters.

6

Server

Update

UploadDistribute①

Malicious Client

Current Model

②

 Norm
Constrain

⑧

Local User
Model

④ Normal gradients

item embeddings
Run on

⑦

③

Local Data User Profile

Compute and

Local Model
Training

Adaptive
Clustering

⑤

⑥

Figure 1: The procedure of ClusterAttack.

Methodology

¨ ClusterAttack
o Apply 𝑘-means to split the item embeddings {𝒗*}*+,- into 𝐾 clusters {𝐶*}*+,. with centroids {𝒄*}*+,. .
o Compute the within-cluster variance and the malicious gradient.

o Gradient clipping
n Compute the normal gradient of each malicious client.
n Calculate the mean 𝜇 and standard deviation 𝜎 of the 𝐿!

norms of all normal item embedding gradients.

7

Server

Update

UploadDistribute①

Malicious Client

Current Model

②

 Norm
Constrain

⑧

Local User
Model

④ Normal gradients

item embeddings
Run on

⑦

③

Local Data User Profile

Compute and

Local Model
Training

Adaptive
Clustering

⑤

⑥

Figure 1: The procedure of ClusterAttack.

ℒ"##"$% ='
&'(

)

'
𝒗!∈,"

𝒗- − 𝒄& !
! +𝐠𝒗" =

𝜕ℒ"##"$%
𝜕𝒗&

.𝐠𝒗"
(-) =

+𝐠𝒗"
max(1, +𝐠𝒗" !

/𝑏&
(-))

𝑏&
(-) = 𝜇 + 𝜆&

(-)𝜎, 𝜆&
(-)∈ [0,3]

Methodology

¨ ClusterAttack
o Adaptive clustering

n Adjust the number of clusters 𝐾 after each round of attack.
n Use the change of ℒ"##"$% as the feedback.
n ℒ"##"$% keeps increasing → ℒ"##"$% cannot converge well.
n ℒ"##"$% keeps decreasing → decrease 𝐾 for stronger attack.

8

Figure 1: The procedure of our ClusterAttack.

L2 regularization to train the local model, i.e., the gradient
g is generated by optimizing the following loss function:

Lrec = � log (� (ŷp � ŷn)) + � k⇥k22 , (1)

where � is the sigmoid function. ŷp and ŷn are the predicted
ranking scores of the positive and negative items. Next, the
client uploads [gitem;gpred] to the server and updates the lo-
cal user model with guser, which is not uploaded due to its
privacy sensitivity (Wu et al. 2021b,c). Finally, the server
aggregates all the received gradients with certain aggrega-
tion rules and updates the global model. Such training round
proceeds iteratively until convergence.

3.2 Threat Model

Attack Goal. The attacker aims to degrade the overall per-
formance of the FedRec system on arbitrary inputs.

Attack Capability and Knowledge. The attacker controls
a set of malicious clients Umal which accounts for m% of U .
As there are usually millions of users in a recommender sys-
tem, we assume that m should be small (e.g., m = 1). Fol-
lowing previous works (Wu et al. 2022; Zhang et al. 2022a),
we assume that the attacker has access to the training code,
local model, and user data on the devices of malicious clients
while cannot access the data or gradients of other benign
clients. The attacker can arbitrarily modify the gradients up-
loaded by the malicious clients. We also assume the attacker
does not know the aggregation rule used by the server.

4 Methodology

In this section, we introduce the details of our untargeted
model poisoning attack method ClusterAttack and our de-
fense mechanism UNION for FedRec systems.

4.1 ClusterAttack

To degrade the overall performance of FedRec systems, our
ClusterAttack aims to poison the item embeddings, which
are widely used in most recommendation models (Kang and
McAuley 2018; Wang et al. 2019). Since a recommenda-
tion model generally predicts the ranking score based on a
user embedding and an item embedding, our main idea is to

Algorithm 1: Adaptive Clustering
Input: Number of clusters K, range of number of clusters

[Kmin,Kmax], threshold R, and decay rate �.
Init: Set L̃(0)

attack, ninc, ndec and t as 0.
// Repeat after each round of attack

1 t t+ 1;
2 Calculate L(t)

attack with Equation (2);
3 L̃(t)

attack � · L̃(t�1)

attack + (1� �) · L(t)

attack;
4 L̂(t)

attack L̃(t)

attack/
�
1� �t

�
;

5 if L̂(t)

attack > L̂(t�1)

attack then ninc ninc + 1;
6 else ndec ndec + 1;
7 if ninc � ndec > R then

8 K min
�⌅
K +

p
Kmax �K

⇧
,Kmax

�
;

9 Reset ninc, ndec and t as 0;
10 end if

11 if ndec � ninc > R then

12 K max
�⌅
K �

p
K �Kmin

⇧
,Kmin

�
;

13 Reset ninc, ndec and t as 0;
14 end if

converge these item embeddings into several dense clusters.
Thus, the recommender tends to generate similar scores for
these close items in the same cluster and mess up the ranking
order. Figure 1 illustrates the procedure of ClusterAttack.

When selected for model training, the malicious client re-
ceives the latest global model from the server, which con-
tains the item embeddings {vi}M

i=1 (Step 1). We first apply
k-means (Lloyd 1982) to split them into K clusters {Ci}K

i=1

with centroids {ci}K

i=1 (Step 2). Then we compute the fol-
lowing loss function to measure the within-cluster variance:

Lattack =
KX

i=1

X

vj2Ci

kvj � cik22 . (2)

The malicious gradient of each item embedding is computed
to minimize the above attack loss, i.e., g̃vi

= @Lattack/@vi

(Step 3). To make our attack stealthier, we further clip g̃vi

with an estimated norm of normal item embedding gradi-
ents. Specifically, for each malicious client u(j) 2 Umal, we
compute the normal gradient with the original loss function
Lrec and his local training data (Step 4). Then we calcu-
late the mean µ and standard deviation � of the L2 norms
of all normal item embedding gradients. Assuming these
norms follow a Gaussian distribution, we generate a reason-
able norm bound b(j)i = µ+ �(j)

i � for each item embedding
vi on the malicious client u(j), where �(j)

i is a number ran-
domly sampled from [0, 3]. Therefore, the clipped malicious
item embedding gradients are formulated as follows:

ĝ(j)
vi

=
g̃vi

max
�
1, kg̃vik2 /b

(j)

i

� . (3)

The malicious gradient of the item model is set as ĝ(j)

item =⇥
ĝ(j)
v1
; ĝ(j)

v2
; · · · ; ĝ(j)

vM

⇤
. Finally, the malicious client uploads

ĝ(j) =
h
ĝ(j)

item;g
(j)

pred

i
to the server and updates its local user

model with the normal gradient g(j)
user (Step 6 & 7).

Methodology

¨ UNION Mechanism
o Client Side

n Train the local recommendation model with an additional contrastive learning task.
n Denote the item set interacted by the user as 𝒱0 = {𝑣&}&'(1 and the entire item set as 𝒱.
n For each 𝑣& ∈ 𝒱0, randomly select another positive item 𝑣&2 ∈ 𝒱0 and 𝑃 negative items {𝑣&3}&'(4 ⊆ 𝒱\𝒱0.

n ℒ56 can regularize the item embeddings toward a uniform distribution in the space [1] while training with the
recommendation task (opposite to the goal of ClusterAttack).

9

ℒ56 = −'
&'(

1

log
𝑒7 8" #7(8"

$)

𝑒7 8" #7(8"
$) + ∑-'(4 𝑒7 8" #7(8"

%)
ℒ = ℒ9:5 + 𝛼ℒ56

[1] Wang et al. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere. In ICML. 2020.

Methodology

¨ UNION Mechanism
o Server Side

n Estimate the uniformity of updated item embeddings for each received gradient.

n Use the Gap Statistics algorithm [2] to estimate the number of clusters in {𝑑&}&'(; .
n If the algorithm estimates that there is more than one cluster, we apply 𝑘-means to split {𝑑&}&'(; into two clusters

and remove all the gradients belonging to the minor one.

o Note
n UNION is a general mechanism that aims to preserve the distribution of item embeddings.
n It can be combined with existing Byzantine-robust FL methods (e.g., MultiKrum, NormBound) to provide more

comprehensive protection for FedRec systems.

10

Algorithm 2: Defense Procedure on the Server Side
Input: A set of received model gradients�

g(i)
 n

i=1
=
nh

g(i)

item;g(i)

pred

ion

i=1
, current global

model ⇥ = [⇥item;⇥pred], learning rate ⌘, the
item set I, and number of random sampling T .

Output: A set of filtered model gradients Gfilter.
1 for i 1 to n do

2 Update the item model ⇥(i)0
item ⇥item � ⌘ · g(i)

item;
3 Randomly select T items {vi}T

i=1 from I to estimate
the uniformity of updated item embeddings
di 2

T (T�1)

PT
j=1

PT
k=j+1 kf(vj)� f(vk)k22;

4 end for

5 if GapStatistics({di}ni=1) then

6 Running k-means to split {di}ni=1 into two clusters;
7 Gfilter all the gradients in the larger cluster;
8 else

9 Gfilter
�
g(i)

 n

i=1
;

10 end if

11 return Gfilter

Considering that the number of clusters K will greatly
impact the attack effect, we further design an adaptive clus-
tering mechanism to automatically adjust the value of K
after each round of attack (Step 8), which is shown in Al-

gorithm 1. Since the only feedback of the attack effect for
the attacker is Lattack in Equation (2), we track it during
the attack process and compute its bias-corrected exponen-
tial moving average L̂attack. We use two counters ninc and
ndec to record the number of rounds in which the smoothed
attack loss increases and decreases, respectively. If L̂attack

increased in most of the past few rounds, we assume that
the current value of K is too small, and the attack loss can-
not converge well. Thus, we increase the value of K to make
the attack easier. Contrarily, if L̂attack keeps descending, we
further decrease the value of K to perform a stronger attack.

4.2 UNION Mechanism

Our ClusterAttack reveals that maintaining the distribution
of item embeddings is essential for protecting FedRec sys-
tems. Thus, we further propose a uniformity-based defense
mechanism (UNION) that regularizes the item embeddings
toward a uniform distribution in the space with a contrastive
learning task. Then the server filters out these malicious gra-
dients that lead to abnormally distributed item embeddings.

Client Side. We require all benign clients to train the local
recommendation model with an additional contrastive learn-
ing (CL) task. Specifically, denote the item set interacted by
a client as Iu = {vi}Li=1. For each vi 2 Iu, we randomly
select another item v+

i from Iu as the positive sample, and P
items {v-

i }
P

i=1 from I\Iu as the negative samples. We adopt
InfoNCE (Oord, Li, and Vinyals 2018) as the contrastive loss
function. It is formulated as follows:

Lcl = �
LX

i=1

log
ef(vi)

Tf(v+
i)

ef(vi)
Tf(v+

i) +
PP

j=1 e
f(vi)

Tf(v-
j)
, (4)

Algorithm 3: Gap Statistics
Input: A set of estimated uniformity {di}ni=1, and number

of sampling B.
Output: Whether there is more than one cluster.

1

n
d̃i
on

i=1
 apply min-max normalization to {di}ni=1;

2 for k 2 {1, 2} in parallel do

3 Apply k-means on
n
d̃i
on

i=1
to get clusters {Di}ki=1

with centroids {µi}ki=1;

4 wk
Pk

i=1

P
d̃j2Di

���d̃j � µi

���
2

2
;

5 for b 1 to B do

6 Uniformly sample n points {ti}ni=1 from [0, 1];
7 Apply k-means on {ti}ni=1 to get clusters

{D0
i}

k
i=1 with centoids {µ0

i}
k
i=1;

8 w⇤
b

Pk
i=1

P
tj2D0

i
ktj � µ0

ik
2
2;

9 end for

10 w = 1
B

PB

b=1 log (w
⇤
b);

11 gapk w � log (wk);

12 sk
q

1+B
B2

PB

b=1 [log(w
⇤
b)� w]2;

13 end for

14 return gap1 < gap2 � s2

where f denotes the item model. The overall loss function
on the client side is L = Lrec + ↵ · Lcl. As proved by Wang
and Isola (2020), the contrastive loss Lcl asymptotically op-
timizes the uniformity of the distribution induced from the
learned embeddings, which is measured as follows:

Luniform(f ; t) = E
x,y

i.i.d⇠pdata
e�tkf(x)�f(y)k2

2 , t > 0. (5)

Therefore, the additional CL task can regularize the item em-
beddings toward a uniform distribution in the space while
training with the recommendation task. Since such an opti-
mization objective is opposite to the goal of ClusterAttack,
the CL task can mitigate its attack effect and also makes it
easier for the server to distinguish these malicious gradients.

Server Side. Since now all benign clients train the model
with the CL task that optimizes the item embeddings toward
a uniform distribution, we let the server estimate the unifor-
mity of updated item embeddings for each received gradient.
Here we measure the uniformity in terms of the average L2

distance between any two item embeddings, i.e.,

di = E
x,y

i.i.d⇠pdata
kf(x)� f(y)k22 , (6)

which is a simplified version of Equation (5). The defense
procedure on the server side is shown in Algorithm 2.
We further adopt the Gap Statistics algorithm (Tibshirani,
Walther, and Hastie 2001) to estimate the number of clusters
in the set of estimated uniformity {di}ni=1, which is shown in
Algorithm 3. Generally, it compares the change of within-
cluster dispersion with that expected under a uniform distri-
bution to determine the number of clusters in a set of data. If
the algorithm estimates that there is more than one cluster,
we believe there are some malicious gradients that lead to
abnormally distributed item embeddings. Hence, we further

[2] Tibshirani et al. Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 2001.

Experiments
11

¨ Datasets
o MovieLens-1M
o Gowalla

¨ Base Recommendation Model
o MF
o SASRec

¨ Metrics
o Hit Ratio (HR)
o Normalized Discounted Cumulative Gain (NDCG)
o Only calculated on benign clients using the all-ranking protocol.

Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Table 2: Detailed statistics of the two datasets.

Experiments
12

¨ Attack Performance with No Defense

Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

Experiments
12

¨ Attack Performance with No Defense

Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

Experiments
12

¨ Attack Performance with No Defense

Model Attack
Method

ML-1M Gowalla

HR@5 NDCG@5 HR@5 NDCG@5

MF

No Attack 0.03549 (-) 0.02226(-) 0.02523 (-) 0.01697 (-)
LabelFlip 0.03561 (-0.34%) 0.02238 (-0.54%) 0.02541 (-0.71%) 0.01711 (-0.82%)
FedAttack 0.03358 (5.38%) 0.02118 (4.85%) 0.02371 (6.02%) 0.01585 (6.60%)
Gaussian 0.03555 (-0.17%) 0.02224 (0.09%) 0.02528 (-0.20%) 0.01701 (-0.24%)

LIE 0.03259 (8.17%) 0.02062 (7.37%) 0.02316 (8.20%) 0.01571 (7.42%)
Fang 0.03038 (14.40%) 0.01897 (14.78%) 0.02131 (15.54%) 0.01448 (14.67%)

ClusterAttack 0.02451 (30.94%) 0.01545 (30.59%) 0.01664 (34.05%) 0.01117 (34.18%)

SASRec

No Attack 0.10810 (-) 0.07053 (-) 0.03251 (-) 0.02217 (-)
LabelFlip 0.10857 (-0.43%) 0.07071 (-0.26%) 0.03270 (-0.58%) 0.02222 (-0.23%)
FedAttack 0.10013 (7.37%) 0.06572 (6.82%) 0.03054 (6.06%) 0.02087 (5.86%)
Gaussian 0.10769 (0.38%) 0.07055 (-0.03%) 0.03226 (0.77%) 0.02222 (-0.23%)

LIE 0.09677 (10.48%) 0.06281 (10.95%) 0.03008 (7.47%) 0.02021 (8.84%)
Fang 0.08964 (17.08%) 0.05909 (16.22%) 0.02797 (13.96%) 0.01883 (15.07%)

ClusterAttack 0.06547 (39.44%) 0.04130 (41.44%) 0.02223 (31.62%) 0.01544 (30.36%)

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

apply k-means to split {di}ni=1 into two clusters and filter
out all the gradients belonging to the minor one.

It is noted that UNION is a general mechanism that aims
to preserve the distribution of item embeddings. It can be
easily combined with many existing Byzantine-robust FL
methods (Blanchard et al. 2017; Wang et al. 2020) to provide
more comprehensive protection for FedRec systems. These
methods can learn a more accurate model on the set of fil-
tered model gradients returned by our UNION mechanism
while maintaining their original convergence guarantee.

5 Experiments

In this section, we conduct several experiments to answer
the following research questions (RQs):
• RQ1: How does our ClusterAttack perform compared

with existing untargeted attack methods?
• RQ2: Can our ClusterAttack circumvent existing defense

methods while preserving its attack performance?
• RQ3: How does our UNION mechanism perform against

existing untargeted attacks and our ClusterAttack?
• RQ4: How does the ratio of malicious clients affect the

performance of our methods?
• RQ5: Is the proposed adaptive clustering mechanism in

our ClusterAttack effective?
• RQ6: How difficult it is to defend our ClusterAttack, and

why does our UNION mechanism work?

5.1 Datasets and Experimental Settings

We conduct experiments with two public datasets. The first
is ML-1M (Harper and Konstan 2016), a movie recommen-
dation dataset. The second is Gowalla (Liang et al. 2016),
a check-in dataset obtained from the Gowalla website. We
adopt the 10-core version used in (Wang et al. 2019), i.e.,
retaining users and items with at least ten interactions. The
statistics of the two datasets are shown in Table 2. Following
previous works (He et al. 2017; Sun et al. 2019), we adopt

Dataset #Users #Items #Actions Avg. length Density

ML-1M 6,040 3,706 1,000,209 165.6 4.47%
Gowalla 29,858 40,981 1,585,043 53.1 0.13%

Table 2: Detailed statistics of the two datasets.

the leave-one-out approach and hold out the latest interacted
item of each user as the test data. We use the item before the
last one for validation and the rest for training.

In our experiments, we choose the widely used MF (Ren-
dle et al. 2009) and SASRec (Kang and McAuley 2018) as
the recommendation model. The hidden dimension of mod-
els is 64. We use FedAvg (McMahan et al. 2017) with Adam
optimizer (Kingma and Ba 2015) as the FL framework. Each
user is treated as a client in the FedRec system. 50 clients are
randomly selected in each round for model training. We ran-
domly select 1% of users from the entire user set U and take
them as malicious clients. The detailed experimental settings
are listed in the Appendix. Following (Zhang et al. 2022a;
Wu et al. 2022), we use the Hit Ratio (HR) and the Normal-
ized Discounted Cumulative Gain (NDCG) over the top 5
ranked items to measure the performance of the recommen-
dation model. Note that the metrics are only calculated on
benign clients using the all-ranking protocol, i.e., all items
not interacted with by the user are used as candidates. All
the hyper-parameters are tuned on the validation set. We re-
peat each experiment 5 times and report the average results.

5.2 Attack Performance Evaluation (RQ1)

We compare the attack performance of ClusterAttack with
the following data poisoning attack methods:
• LabelFlip (Tolpegin et al. 2020), which flips the label of

the training sample on malicious clients;
• FedAttack (Wu et al. 2022), which chooses items that are

most similar to the user embedding as negative samples
and the farthest ones as positive samples;

Table 1: Model performance under different untargeted attack methods with no defense. The percentages in parentheses indicate
the relative performance degradation compared with the no-attack scenario.

Experiments
13

¨ Attack Performance under Defense (Left five groups)

Figure 2: Model performance under different untargeted attack methods with different defense mechanisms. The black dashed
line represents the model performance without any attack or defense.

Experiments
13

¨ Attack Performance under Defense (Left five groups)

Figure 2: Model performance under different untargeted attack methods with different defense mechanisms. The black dashed
line represents the model performance without any attack or defense.

Experiments
13

¨ Attack Performance under Defense (Left five groups)

Figure 2: Model performance under different untargeted attack methods with different defense mechanisms. The black dashed
line represents the model performance without any attack or defense.

Experiments
14

¨ Defense Performance (Right two groups)

Figure 2: Model performance under different untargeted attack methods with different defense mechanisms. The black dashed
line represents the model performance without any attack or defense.

Experiments
15

¨ Can the attacker evade UNION?
o ℒ/00/123 = ℒ/00/12 + 𝛼 2 ℒ14
o The extra contrastive learning task weakens the attack effect of ClusterAttack.

Table 3: Attack performance of ClusterAttack+CL.

Figure 2: Model performance under different untargeted attack methods with different defense mechanisms. The black dashed
line represents the model performance without any attack or defense.

and the following model poisoning attack methods:
• Gaussian (Fang et al. 2020), which computes the mean

and standard deviation of normal gradients and then up-
loads samples from the estimated Gaussian distribution;

• LIE (Baruch, Baruch, and Goldberg 2019), which adds
small amounts of noise to the average normal gradient;

• Fang (Fang et al. 2020), which adds noise in opposite di-
rections to the average normal gradient.
The experimental results are shown in Table 1. From the

results, we have several findings. First, not all untargeted
poisoning attacks are effective against FedRec systems when
the number of malicious clients is limited. Especially, La-

belFlip and Gaussian even slightly raise the performance of
the model. This may be because such limited perturbations
make the recommendation model more robust to the noise in
user behaviors. Second, well-designed model poisoning at-
tacks (LIE, Fang, and ClusterAttack) usually perform better
than data poisoning attacks (LabelFlip and FedAttack). This
is because these model poisoning attacks directly modify the
uploaded gradient, which is more flexible and effective than
manipulating the training data. Third, our ClusterAttack con-
sistently outperforms other baselines by a large margin. The
reason is that our method uploads the poisonous gradient
that converges the item embeddings into several dense clus-
ters. It is more effective than these baseline model poisoning
attacks that only add certain perturbation noise to the normal
gradients. Besides, our adaptive clustering mechanism can
automatically adjust the number of clusters after each round
of attack, which also leads to better attack performance.

5.3 Attack Effectiveness under Defense (RQ2)

To verify the effectiveness of ClusterAttack under defense,
we compare the attack performance of different attack meth-
ods against the following Byzantine-robust FL methods:
• TrimmedMean (Yin et al. 2018), which computes the

coordinate-wise trimmed mean of the received gradients.
• Krum (Blanchard et al. 2017), which selects the gradient

closest to its neighboring gradients for the model update.
• MultiKrum (Blanchard et al. 2017), which selects multiple

gradients via Krum and calculates their average.

Defense Method Attack Method HR@5

MultiKrum+UNION ClusterAttack 0.03378 (4.82%)
ClusterAttack+CL 0.03525 (0.68%)

NormBound+UNION ClusterAttack 0.03449 (2.82%)
ClusterAttack+CL 0.03566 (-0.48%)

Table 3: Attack performance of ClusterAttack+CL.

• NormBound (Wang et al. 2020), which clips the L2 norm
of received gradients with a threshold before aggregation.

• FL-WBC (Sun et al. 2021), in which all benign clients up-
load partially masked gradients with Laplace noise to mit-
igate the attack effect on the global model.
We use MF and ML-1M in the following experiments

(the results with SASRec and Gowalla show similar trends
and are omitted due to the space limit). The results are
shown as the left five groups in Figure 2. We find that some
Byzantine-robust FL methods such as TrimmedMean and
Krum severely degrade the performance of the recommen-
dation model even without any attack. We attribute it to the
highly non-IID training data on each client. Some benign
gradients may also deviate from others. Therefore, they may
be incorrectly filtered out by these defense methods, which
will impair the performance of the global model. The par-
tially masked gradients used in FL-WBC will cause certain
information loss which also leads to performance degrada-
tion. In contrast, MultiKrum and NormBound do not sub-
stantially hurt the model performance and can mitigate the
impact of most existing attacks. However, none of these ex-
isting defense methods can effectively defend ClusterAttack.
The reason is that we only manipulate the item embedding
gradients and further bound their L2 norms by the one esti-
mated from normal gradients, which makes it less likely to
be detected as an outlier by these defense methods. Besides,
our further analysis finds that the non-IID training data on
each client also covers our attack (See Section 5.7).

5.4 Defense Performance Evaluation (RQ3)

In this subsection, we evaluate the effectiveness of our
UNION mechanism. Since MultiKrum and NormBound will

Experiments
16

¨ Impact of Adaptive Clustering

Figure 3: Impact of adaptive clustering.

Experiments
17

Figure 4: Visualization of the uploaded gradients and the uniformity distribution in different rounds of model training. The blue color and
red color denote benign clients and malicious clients, respectively.

¨ Gradients and Uniformity Analysis

Conclusion

¨ ClusterAttack
o Uploads malicious gradients that converge the item embeddings into dense clusters.
o Reveals the security risk of FedRec systems even with existing defense methods.

¨ UNION
o Preserves the distribution of item embeddings with an additional contrastive learning task.
o Combines with existing Byzantine-robust FL methods to better protect the FedRec system from potential

untargeted attacks in the real world.

¨ Extensive experiments validate the effectiveness of our attack and defense methods.

18

Paper Code

23

Thanks For Your Attention

