

Tiny-NewsRec: Effective and Efficient PLM-based News Recommendation

Yang Yu, Fangzhao Wu, Chuhan Wu, Jingwei Yi and Qi Liu

Microsoft Research 微软亚洲研究院

Email: yflyl613@mail.ustc.edu.cn Code: https://github.com/yflyl613/Tiny-NewsRec/

Introduction

Background

- \succ News recommendation is widely used to improve user experience.
- > Learning high-quality news representations from news texts is one of the most critical tasks for news recommendation.
- Pre-trained language models (PLMs) have benefited news recommendation by improving news modeling.

Challenges

- \succ Simply finetuning the general PLM with the news recommendation task may suffer from the domain shift problem.
- Deploying large PLM-based news recommendation models for online services requires extensive computational resources.

Datasets

- > *MIND*: a public news recommendation dataset.
- \succ Feeds: a news recommendation dataset collected on the MSN App.

Experiments

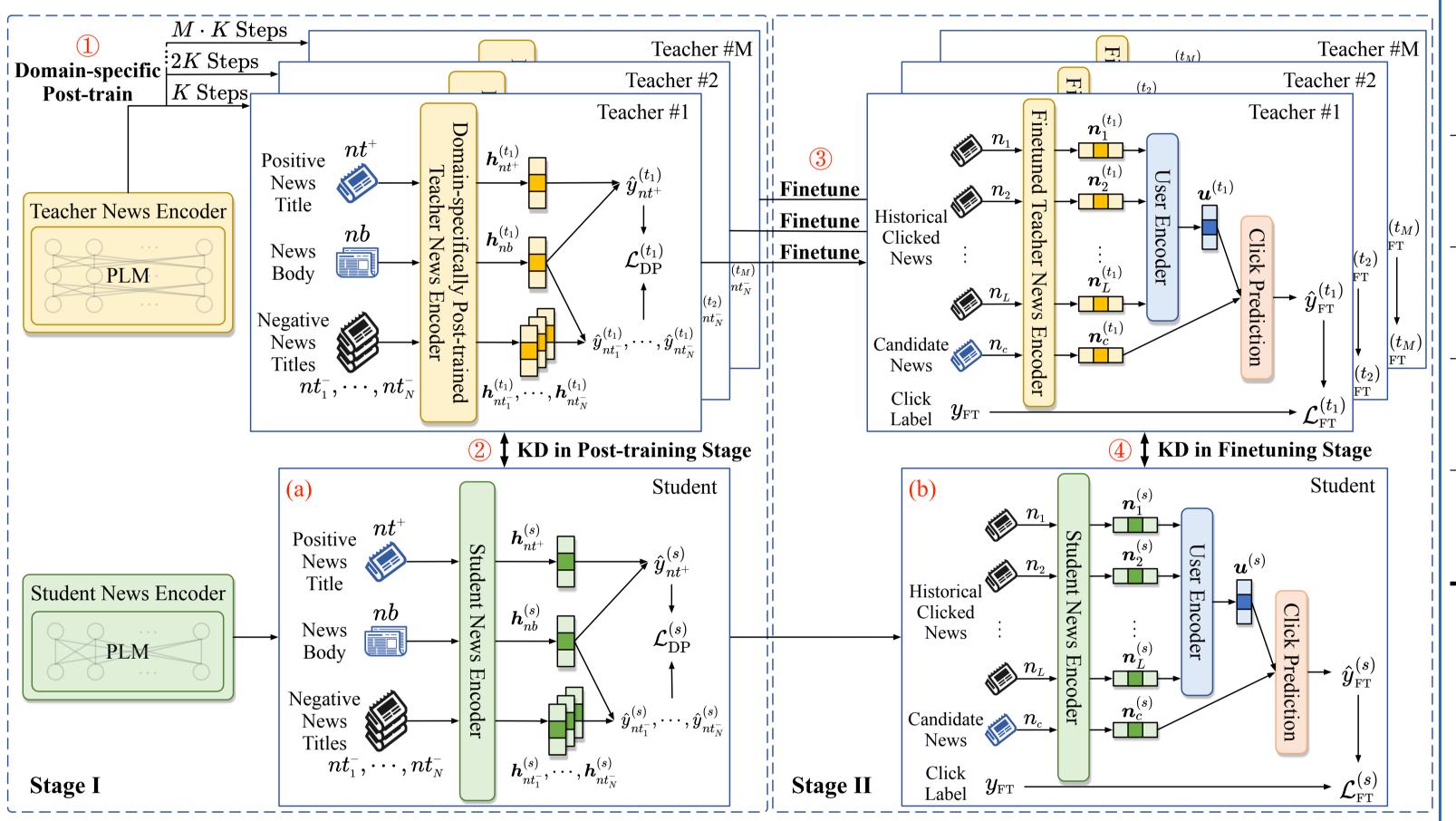
News: news articles collected on the MSN website.

MIND							
# News	161,013	# Users	1,000,000				
# Impressions	15,777,377	# Clicks	24,155,470				
Avg. title length	11.52						
Feeds							
# News	377,296	# Users	10,000				
# Impressions	320,925	# Clicks	437,072				
Avg. title length	11.93						
News							
# News	1,975,767	Avg. title length	11.84				

Tiny-NewsRec

Main Idea

- > Adapt the general PLM to the news domain with self-supervised domain-specific post-training before the task-specific finetuning.
- \succ Compress the large PLM-based model with a two-stage knowledge distillation method.



Avg. body length 511.43

Detailed statistics of *MIND*, *Feeds*, and *News*.

Performance Comparison

Model	MIND			Feeds			Model
	AUC	MRR	nDCG@10	AUC	MRR	nDCG@10	Size
$PLM-NR_{12}$ (FT)	69.72±0.15	34.74±0.10	43.71±0.07	67.93±0.13	34.42±0.07	45.09±0.07	109.89M
$PLM-NR_{12}$ (DAPT)	69.97±0.08	35.07±0.15	43.98±0.10	68.24±0.09	34.63±0.10	45.30±0.09	109.89M
$PLM-NR_{12}$ (TAPT)	69.82±0.14	34.90±0.11	43.83±0.07	68.11±0.11	34.49 ± 0.12	45.11±0.08	109.89M
$PLM-NR_{12}$ (DP)	71.02±0.07	36.05±0.09	45.03±0.12	69.37±0.10	35.74±0.11	46.45±0.11	109.89M
PLM-NR ₄ (FT)	69.49±0.14	34.40±0.10	43.40±0.09	67.46±0.12	33.71±0.11	44.36±0.09	53.18M
$PLM-NR_2$ (FT)	68.99±0.08	33.59 ± 0.14	42.61±0.11	67.05±0.14	33.33±0.09	43.90±0.12	39.01M
$PLM-NR_1$ (FT)	68.12±0.12	33.20 ± 0.07	42.07±0.10	66.26±0.10	32.55 ± 0.12	42.99±0.09	31.92M
TinyBERT ₄	70.55±0.10	35.60±0.12	44.47±0.08	68.40±0.08	34.64±0.10	45.21±0.11	53.18M
$TinyBERT_2$	70.24±0.13	34.93 ± 0.07	43.98±0.10	68.01±0.07	34.37 ± 0.09	44.90±0.10	39.01M
$TinyBERT_1$	69.19±0.09	34.35 ± 0.10	43.12±0.07	67.16±0.11	33.42 ± 0.07	43.95 ± 0.07	31.92M
NewsBERT ₄	70.62±0.15	35.72±0.11	44.65±0.08	68.69±0.10	34.90±0.08	45.64±0.11	53.18M
NewsBERT ₂	70.41±0.09	35.46 ± 0.07	44.35±0.10	68.24±0.09	34.64 ± 0.11	45.23±0.10	39.01M
NewsBERT ₁	69.45±0.11	34.75 ± 0.09	43.54±0.12	67.37±0.05	33.55 ± 0.10	44.12±0.08	31.92M
Tiny-NewsRec ₄	71.19±0.08	36.21±0.05	45.20±0.09	69.58±0.06	35.90±0.11	46.57±0.07	53.18M
Tiny-NewsRec ₂	70.95±0.04	36.05 ± 0.08	44.93±0.10	69.25±0.07	35.45 ± 0.09	46.25 ± 0.10	39.01M
Tiny-NewsRec ₁	70.04±0.06	35.16±0.10	44.10±0.08	68.31±0.03	34.65 ± 0.08	45.32±0.08	31.92M

Performance of different methods on *MIND* and *Feeds*.

Model	AUC	MRR	nDCG@10
Ensemble-Teacher ₁₂	69.43	35.81	46.53
TinyBERT-MT $_4$	68.87	35.13	45.81
NewsBERT-MT ₄	68.82	35.07	45.80
MT -BERT $_4$	68.51	34.74	45.45
Tiny-NewsRec ₄	69.58	35.90	46.57

Domain-specific Post-training

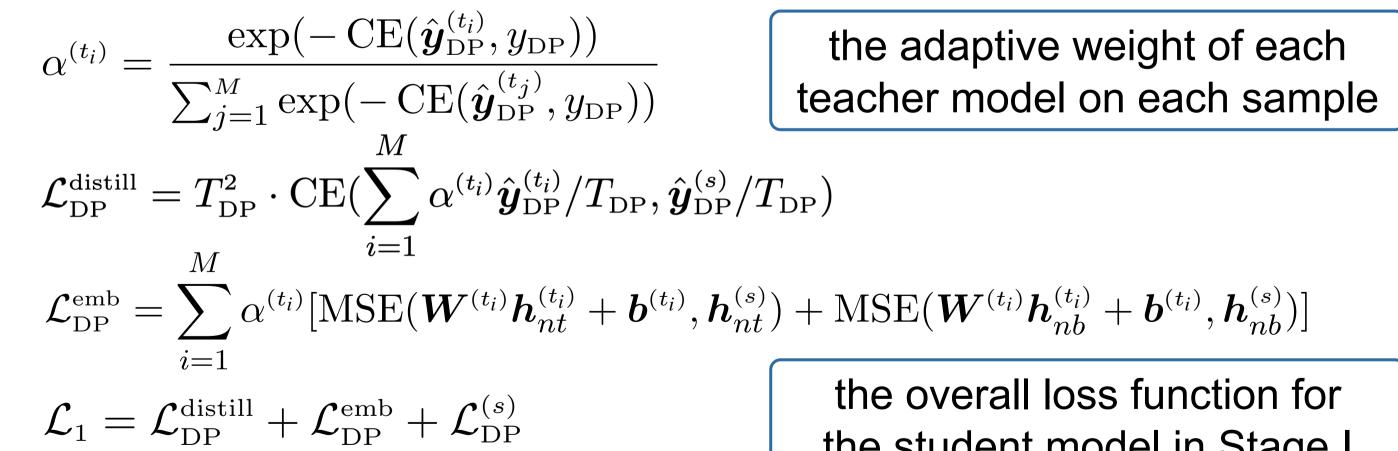
- \succ Different parts of a news article are naturally related.
- Train the PLM-based news encoder with a self-supervised contrastive matching task between news titles and news bodies.

 $\mathcal{L}_{\rm DP} = -\log \frac{\exp(\boldsymbol{h}_{nb}^{\rm T} \boldsymbol{h}_{nt^+})}{\exp(\boldsymbol{h}_{nb}^{\rm T} \boldsymbol{h}_{nt^+}) + \sum_{i=1}^{N} \exp(\boldsymbol{h}_{nb}^{\rm T} \boldsymbol{h}_{nt^-})} \left| \begin{array}{c} nb. \text{ news body} \\ nt^+: \text{ corresponding news title} \\ nt^+: \text{ corresponding news title} \\ nt^-: \text{ rendemly complete power} \end{array} \right|$

nb: news body nt_i^- : randomly sampled news title

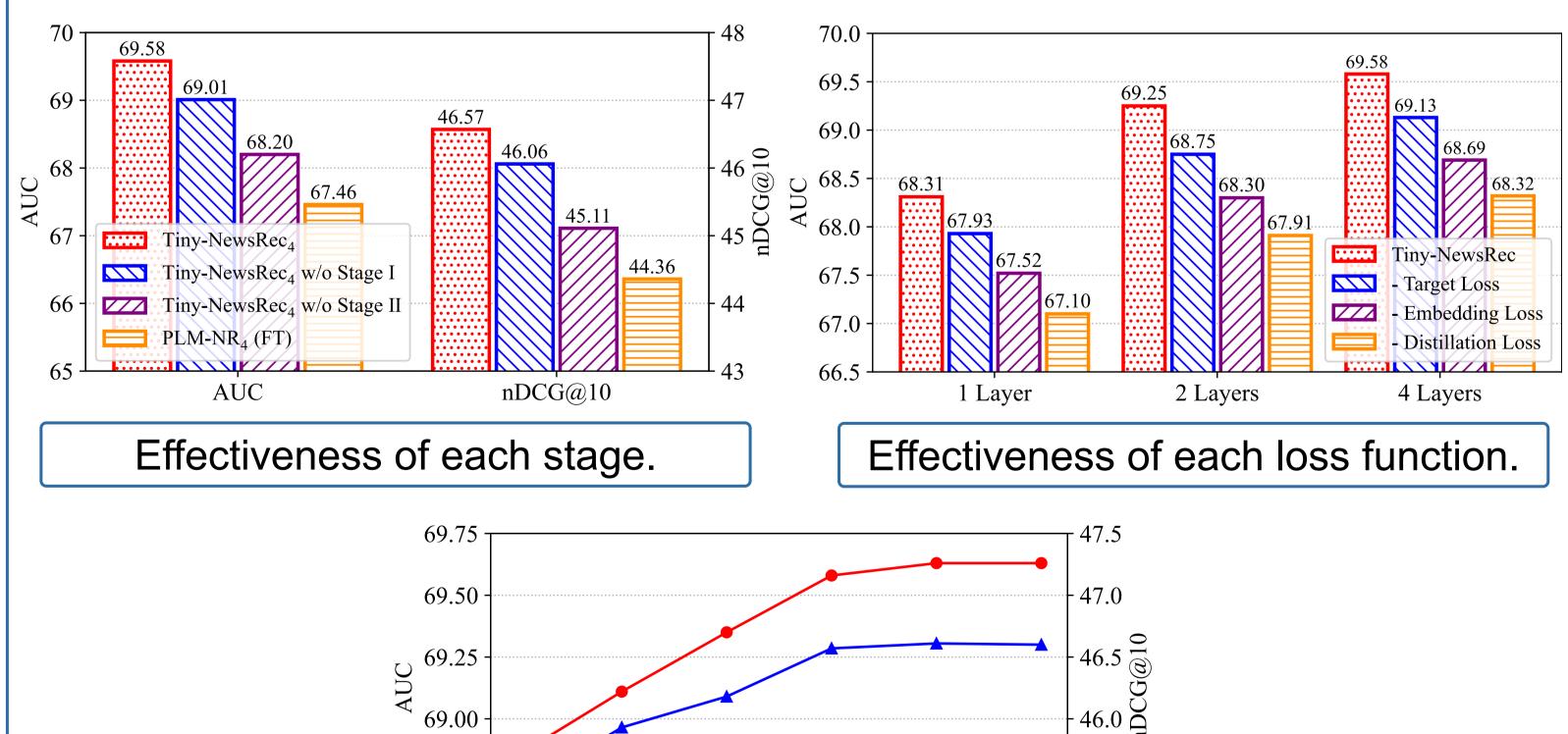
Two-stage Knowledge Distillation

- > Step 1: Post-train the teacher news encoder. A copy is saved every K steps and we save M teacher models in total.
- \succ Step 2: Transfer domain-specific knowledge from these teachers to the student model during its post-training.



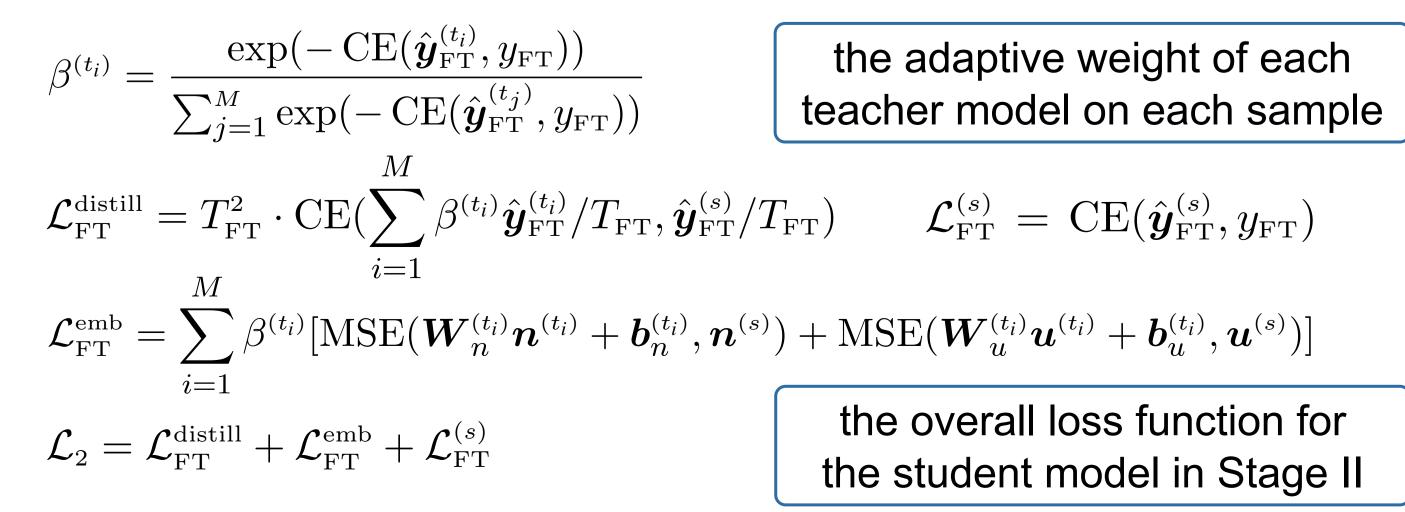
Performance of different methods with multiple teacher models on *Feeds*.

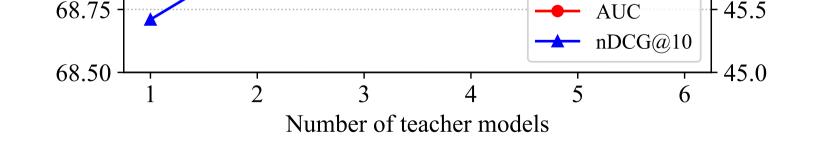
Ablation Study



the student model in Stage I

- \succ Step 3: Finetune these M teacher models with the news recommendation task.
- Step 4: Transfer task-specific knowledge from these teachers to the student model during its finetuning.





Impact of the number of teacher models.

Efficiency Evaluation

